Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method
Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and t...
Gespeichert in:
Veröffentlicht in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2019-12, Vol.124, p.104138, Article 104138 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104138 |
container_title | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
container_volume | 124 |
creator | Sun, Lei Grasselli, Giovanni Liu, Quansheng Tang, Xuhai |
description | Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency. |
doi_str_mv | 10.1016/j.ijrmms.2019.104138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330022321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160919301686</els_id><sourcerecordid>2330022321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOD7-gYuA6455tGm7EWTwBYIbXYeY3Myktsl4kwrz763UtYvLvVzOOXC-orhidM0okzf92vc4jmnNKevmV8VEe1SsWNuIsqqr-ni-haxLJml3Wpyl1FNKJZfNqkibOO0HsGR3sBjLEcxOB2_0QHTQwyH5RFxEssU4ZbKHABl19jEQH4hDbfKEsxmj-UxkSj5sSd4BcT74DKX1ySBkIDDACCGTEfIu2ovixOkhweXfPi_eH-7fNk_ly-vj8-bupdSibnIpa2O5aFtad07WunWVbPkHtcwy5sBAW3OmrdAVo24eSbmraGe1a7Ru2k6K8-J6yd1j_JogZdXHCedaSXEhKOVccDarqkVlMKaE4NQe_ajxoBhVv3hVrxa86hevWvDOttvFBnODbw-okvEQDFiPYLKy0f8f8ANoyIci</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330022321</pqid></control><display><type>article</type><title>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sun, Lei ; Grasselli, Giovanni ; Liu, Quansheng ; Tang, Xuhai</creator><creatorcontrib>Sun, Lei ; Grasselli, Giovanni ; Liu, Quansheng ; Tang, Xuhai</creatorcontrib><description>Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2019.104138</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Computer simulation ; Coupling ; Discrete element method ; Finite-discrete element method (FDEM) ; Fracture dilation ; Fracture-fracture interaction ; Fractures ; Geotechnical engineering ; Grout ; Grouting ; Grouting process ; Hydro-mechanical coupling ; In-situ stress conditions ; Mechanical analysis ; Penetration ; Rock masses ; Rocks ; Yttrium</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2019-12, Vol.124, p.104138, Article 104138</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</citedby><cites>FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2019.104138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Grasselli, Giovanni</creatorcontrib><creatorcontrib>Liu, Quansheng</creatorcontrib><creatorcontrib>Tang, Xuhai</creatorcontrib><title>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.</description><subject>Computer simulation</subject><subject>Coupling</subject><subject>Discrete element method</subject><subject>Finite-discrete element method (FDEM)</subject><subject>Fracture dilation</subject><subject>Fracture-fracture interaction</subject><subject>Fractures</subject><subject>Geotechnical engineering</subject><subject>Grout</subject><subject>Grouting</subject><subject>Grouting process</subject><subject>Hydro-mechanical coupling</subject><subject>In-situ stress conditions</subject><subject>Mechanical analysis</subject><subject>Penetration</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Yttrium</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOD7-gYuA6455tGm7EWTwBYIbXYeY3Myktsl4kwrz763UtYvLvVzOOXC-orhidM0okzf92vc4jmnNKevmV8VEe1SsWNuIsqqr-ni-haxLJml3Wpyl1FNKJZfNqkibOO0HsGR3sBjLEcxOB2_0QHTQwyH5RFxEssU4ZbKHABl19jEQH4hDbfKEsxmj-UxkSj5sSd4BcT74DKX1ySBkIDDACCGTEfIu2ovixOkhweXfPi_eH-7fNk_ly-vj8-bupdSibnIpa2O5aFtad07WunWVbPkHtcwy5sBAW3OmrdAVo24eSbmraGe1a7Ru2k6K8-J6yd1j_JogZdXHCedaSXEhKOVccDarqkVlMKaE4NQe_ajxoBhVv3hVrxa86hevWvDOttvFBnODbw-okvEQDFiPYLKy0f8f8ANoyIci</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Sun, Lei</creator><creator>Grasselli, Giovanni</creator><creator>Liu, Quansheng</creator><creator>Tang, Xuhai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201912</creationdate><title>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</title><author>Sun, Lei ; Grasselli, Giovanni ; Liu, Quansheng ; Tang, Xuhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Coupling</topic><topic>Discrete element method</topic><topic>Finite-discrete element method (FDEM)</topic><topic>Fracture dilation</topic><topic>Fracture-fracture interaction</topic><topic>Fractures</topic><topic>Geotechnical engineering</topic><topic>Grout</topic><topic>Grouting</topic><topic>Grouting process</topic><topic>Hydro-mechanical coupling</topic><topic>In-situ stress conditions</topic><topic>Mechanical analysis</topic><topic>Penetration</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Grasselli, Giovanni</creatorcontrib><creatorcontrib>Liu, Quansheng</creatorcontrib><creatorcontrib>Tang, Xuhai</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Lei</au><au>Grasselli, Giovanni</au><au>Liu, Quansheng</au><au>Tang, Xuhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>124</volume><spage>104138</spage><pages>104138-</pages><artnum>104138</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2019.104138</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1609 |
ispartof | International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2019-12, Vol.124, p.104138, Article 104138 |
issn | 1365-1609 1873-4545 |
language | eng |
recordid | cdi_proquest_journals_2330022321 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computer simulation Coupling Discrete element method Finite-discrete element method (FDEM) Fracture dilation Fracture-fracture interaction Fractures Geotechnical engineering Grout Grouting Grouting process Hydro-mechanical coupling In-situ stress conditions Mechanical analysis Penetration Rock masses Rocks Yttrium |
title | Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20hydro-mechanical%20analysis%20for%20grout%20penetration%20in%20fractured%20rocks%20using%20the%20finite-discrete%20element%20method&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Sun,%20Lei&rft.date=2019-12&rft.volume=124&rft.spage=104138&rft.pages=104138-&rft.artnum=104138&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2019.104138&rft_dat=%3Cproquest_cross%3E2330022321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330022321&rft_id=info:pmid/&rft_els_id=S1365160919301686&rfr_iscdi=true |