Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method

Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2019-12, Vol.124, p.104138, Article 104138
Hauptverfasser: Sun, Lei, Grasselli, Giovanni, Liu, Quansheng, Tang, Xuhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104138
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 124
creator Sun, Lei
Grasselli, Giovanni
Liu, Quansheng
Tang, Xuhai
description Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.
doi_str_mv 10.1016/j.ijrmms.2019.104138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330022321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160919301686</els_id><sourcerecordid>2330022321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOD7-gYuA6455tGm7EWTwBYIbXYeY3Myktsl4kwrz763UtYvLvVzOOXC-orhidM0okzf92vc4jmnNKevmV8VEe1SsWNuIsqqr-ni-haxLJml3Wpyl1FNKJZfNqkibOO0HsGR3sBjLEcxOB2_0QHTQwyH5RFxEssU4ZbKHABl19jEQH4hDbfKEsxmj-UxkSj5sSd4BcT74DKX1ySBkIDDACCGTEfIu2ovixOkhweXfPi_eH-7fNk_ly-vj8-bupdSibnIpa2O5aFtad07WunWVbPkHtcwy5sBAW3OmrdAVo24eSbmraGe1a7Ru2k6K8-J6yd1j_JogZdXHCedaSXEhKOVccDarqkVlMKaE4NQe_ajxoBhVv3hVrxa86hevWvDOttvFBnODbw-okvEQDFiPYLKy0f8f8ANoyIci</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330022321</pqid></control><display><type>article</type><title>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sun, Lei ; Grasselli, Giovanni ; Liu, Quansheng ; Tang, Xuhai</creator><creatorcontrib>Sun, Lei ; Grasselli, Giovanni ; Liu, Quansheng ; Tang, Xuhai</creatorcontrib><description>Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2019.104138</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Computer simulation ; Coupling ; Discrete element method ; Finite-discrete element method (FDEM) ; Fracture dilation ; Fracture-fracture interaction ; Fractures ; Geotechnical engineering ; Grout ; Grouting ; Grouting process ; Hydro-mechanical coupling ; In-situ stress conditions ; Mechanical analysis ; Penetration ; Rock masses ; Rocks ; Yttrium</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2019-12, Vol.124, p.104138, Article 104138</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</citedby><cites>FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2019.104138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Grasselli, Giovanni</creatorcontrib><creatorcontrib>Liu, Quansheng</creatorcontrib><creatorcontrib>Tang, Xuhai</creatorcontrib><title>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.</description><subject>Computer simulation</subject><subject>Coupling</subject><subject>Discrete element method</subject><subject>Finite-discrete element method (FDEM)</subject><subject>Fracture dilation</subject><subject>Fracture-fracture interaction</subject><subject>Fractures</subject><subject>Geotechnical engineering</subject><subject>Grout</subject><subject>Grouting</subject><subject>Grouting process</subject><subject>Hydro-mechanical coupling</subject><subject>In-situ stress conditions</subject><subject>Mechanical analysis</subject><subject>Penetration</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Yttrium</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOD7-gYuA6455tGm7EWTwBYIbXYeY3Myktsl4kwrz763UtYvLvVzOOXC-orhidM0okzf92vc4jmnNKevmV8VEe1SsWNuIsqqr-ni-haxLJml3Wpyl1FNKJZfNqkibOO0HsGR3sBjLEcxOB2_0QHTQwyH5RFxEssU4ZbKHABl19jEQH4hDbfKEsxmj-UxkSj5sSd4BcT74DKX1ySBkIDDACCGTEfIu2ovixOkhweXfPi_eH-7fNk_ly-vj8-bupdSibnIpa2O5aFtad07WunWVbPkHtcwy5sBAW3OmrdAVo24eSbmraGe1a7Ru2k6K8-J6yd1j_JogZdXHCedaSXEhKOVccDarqkVlMKaE4NQe_ajxoBhVv3hVrxa86hevWvDOttvFBnODbw-okvEQDFiPYLKy0f8f8ANoyIci</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Sun, Lei</creator><creator>Grasselli, Giovanni</creator><creator>Liu, Quansheng</creator><creator>Tang, Xuhai</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201912</creationdate><title>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</title><author>Sun, Lei ; Grasselli, Giovanni ; Liu, Quansheng ; Tang, Xuhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-65cd2388059f65a8f4682b0d1d11fece8521ad3a410f410602f409daf7aa78963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Coupling</topic><topic>Discrete element method</topic><topic>Finite-discrete element method (FDEM)</topic><topic>Fracture dilation</topic><topic>Fracture-fracture interaction</topic><topic>Fractures</topic><topic>Geotechnical engineering</topic><topic>Grout</topic><topic>Grouting</topic><topic>Grouting process</topic><topic>Hydro-mechanical coupling</topic><topic>In-situ stress conditions</topic><topic>Mechanical analysis</topic><topic>Penetration</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Grasselli, Giovanni</creatorcontrib><creatorcontrib>Liu, Quansheng</creatorcontrib><creatorcontrib>Tang, Xuhai</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Lei</au><au>Grasselli, Giovanni</au><au>Liu, Quansheng</au><au>Tang, Xuhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>124</volume><spage>104138</spage><pages>104138-</pages><artnum>104138</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>Grouting is a widely used geotechnical engineering method to improve the strength and reduce the hydraulic conductivity of rock masses. The grouting process is a typical coupled hydro-mechanical (HM) problem, which should be analyzed by considering the mutual interaction between the grout flow and the rock mass. In this paper, a coupled HM model (Y-grouting) is presented to study the grouting process using the finite-discrete element method (FDEM). This Y-grouting can well explain some typical phenomena observed during grouting operations, which are difficult to be modelled by pure hydraulic analysis. The dilation process experienced by the fracture during grout injection clearly illustrates the necessity of considering the HM coupling effect. The effect of the in-situ stress conditions on the anisotropic grout penetration is properly modelled with the Y-grouting that, together with the stress interaction between neighbor fractures, explains why finer fractures are more difficult to be grouted and whether increasing the grouting pressure could be an effective way to improve the penetration in fine fractures. Ultimately, the results demonstrate importance of considering the HM coupling when simulating grouting and assessing the grouting efficiency.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2019.104138</doi></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2019-12, Vol.124, p.104138, Article 104138
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_journals_2330022321
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Coupling
Discrete element method
Finite-discrete element method (FDEM)
Fracture dilation
Fracture-fracture interaction
Fractures
Geotechnical engineering
Grout
Grouting
Grouting process
Hydro-mechanical coupling
In-situ stress conditions
Mechanical analysis
Penetration
Rock masses
Rocks
Yttrium
title Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20hydro-mechanical%20analysis%20for%20grout%20penetration%20in%20fractured%20rocks%20using%20the%20finite-discrete%20element%20method&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Sun,%20Lei&rft.date=2019-12&rft.volume=124&rft.spage=104138&rft.pages=104138-&rft.artnum=104138&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2019.104138&rft_dat=%3Cproquest_cross%3E2330022321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330022321&rft_id=info:pmid/&rft_els_id=S1365160919301686&rfr_iscdi=true