A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter

•The dynamic property of lithium‐ion battery is approximated by the ARMA model.•An improved cubature Kalman filter is employed to develop a reliable estimator for SOC.•An adaptive robust strategy is used to improve anti‐interference performance of SOC estimation. Accurate and robust state of charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2019-12, Vol.177, p.105951, Article 105951
Hauptverfasser: Liu, Zheng, Dang, Xuanju, Jing, Benqin, Ji, Jianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105951
container_title Electric power systems research
container_volume 177
creator Liu, Zheng
Dang, Xuanju
Jing, Benqin
Ji, Jianbo
description •The dynamic property of lithium‐ion battery is approximated by the ARMA model.•An improved cubature Kalman filter is employed to develop a reliable estimator for SOC.•An adaptive robust strategy is used to improve anti‐interference performance of SOC estimation. Accurate and robust state of charge (SOC) estimation is the key evaluation index for battery management system (BMS) in electric vehicles (EVs). To improve the SOC estimation precision and reliability, a novel model-based estimation approach has been proposed. Firstly, the dynamic property of lithium-ion battery (LIB) is approximated by the auto-regressive and moving average (ARMA) model which compensates the measurement errors of terminal voltage and discharge current. Secondly, a variant of the Kalman filter (KF), namely improved cubature Kalman filter (CKF) based on the combination of singular value decomposition (SVD) and Gauss–Newton iterative technology is employed to develop a reliable estimator for SOC. Furthermore, an adaptive robust strategy is used to improve anti-interference performance by accounting for bidirectional adjustment of observation covariance and gain matrix. Finally, the Dynamic Stress Test (DST) and Federal Urban Driving Schedule (FUDS) are loaded on LIB to test the validity of the improved approach. The experiment results demonstrate the effectiveness of the combination of ARMA model and filtering method in terms of SOC estimation. Besides, simulated measurement noise is added to the test data to prove the robustness of the proposed method.
doi_str_mv 10.1016/j.epsr.2019.105951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330022095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779619302706</els_id><sourcerecordid>2330022095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-1b5296ef87a071500833fd0a26c2d65a1f9c4173ddcede55c0a014f26bdb61b43</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHPWydJk90FLyJ-oeBFzyGbzGrKdlOTbMGD_93UevY0zLz3Zt48Qs4ZLBgwdbla4CbFBQfWloFsJTsgM9bUouKwVIdkBqJuqrpu1TE5SWkFAKqt5Yx8X9MxbHGg6-BwqDqT0NGUTUYaemo_THxHiin7tck-jLQPkQ4-f_hpXe36zuSM8YtOyY_v1DizyX6LNIZuSpn6gpnfgZ0Kc4pIn8ywNmWPHwp2So56MyQ8-6tz8nZ3-3rzUD2_3D_eXD9XVvAmV6yTvFXYN7WBmkmARojegeHKcqekYX1rl6wWzll0KKUFA2zZc9W5TrFuKebkYr93E8PnVN7RqzDFsZzUXAgAzqGVhcX3LBtDShF7vYnl7_ilGehdzHqldzHrXcx6H3MRXe1FWPxvPUadrMexGPERbdYu-P_kP3uGiG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330022095</pqid></control><display><type>article</type><title>A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Zheng ; Dang, Xuanju ; Jing, Benqin ; Ji, Jianbo</creator><creatorcontrib>Liu, Zheng ; Dang, Xuanju ; Jing, Benqin ; Ji, Jianbo</creatorcontrib><description>•The dynamic property of lithium‐ion battery is approximated by the ARMA model.•An improved cubature Kalman filter is employed to develop a reliable estimator for SOC.•An adaptive robust strategy is used to improve anti‐interference performance of SOC estimation. Accurate and robust state of charge (SOC) estimation is the key evaluation index for battery management system (BMS) in electric vehicles (EVs). To improve the SOC estimation precision and reliability, a novel model-based estimation approach has been proposed. Firstly, the dynamic property of lithium-ion battery (LIB) is approximated by the auto-regressive and moving average (ARMA) model which compensates the measurement errors of terminal voltage and discharge current. Secondly, a variant of the Kalman filter (KF), namely improved cubature Kalman filter (CKF) based on the combination of singular value decomposition (SVD) and Gauss–Newton iterative technology is employed to develop a reliable estimator for SOC. Furthermore, an adaptive robust strategy is used to improve anti-interference performance by accounting for bidirectional adjustment of observation covariance and gain matrix. Finally, the Dynamic Stress Test (DST) and Federal Urban Driving Schedule (FUDS) are loaded on LIB to test the validity of the improved approach. The experiment results demonstrate the effectiveness of the combination of ARMA model and filtering method in terms of SOC estimation. Besides, simulated measurement noise is added to the test data to prove the robustness of the proposed method.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2019.105951</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive filters ; Auto-regressive and moving average model ; Batteries ; Computer simulation ; Covariance ; Electric vehicles ; Estimating techniques ; Improved robust strategy ; Iterated cubature ; Iterative methods ; Kalman filter ; Kalman filters ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Noise measurement ; Power management ; Rechargeable batteries ; Robustness ; Schedules ; Singular value decomposition ; State of charge</subject><ispartof>Electric power systems research, 2019-12, Vol.177, p.105951, Article 105951</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-1b5296ef87a071500833fd0a26c2d65a1f9c4173ddcede55c0a014f26bdb61b43</citedby><cites>FETCH-LOGICAL-c328t-1b5296ef87a071500833fd0a26c2d65a1f9c4173ddcede55c0a014f26bdb61b43</cites><orcidid>0000-0003-0626-689X ; 0000-0002-5733-0436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2019.105951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Dang, Xuanju</creatorcontrib><creatorcontrib>Jing, Benqin</creatorcontrib><creatorcontrib>Ji, Jianbo</creatorcontrib><title>A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter</title><title>Electric power systems research</title><description>•The dynamic property of lithium‐ion battery is approximated by the ARMA model.•An improved cubature Kalman filter is employed to develop a reliable estimator for SOC.•An adaptive robust strategy is used to improve anti‐interference performance of SOC estimation. Accurate and robust state of charge (SOC) estimation is the key evaluation index for battery management system (BMS) in electric vehicles (EVs). To improve the SOC estimation precision and reliability, a novel model-based estimation approach has been proposed. Firstly, the dynamic property of lithium-ion battery (LIB) is approximated by the auto-regressive and moving average (ARMA) model which compensates the measurement errors of terminal voltage and discharge current. Secondly, a variant of the Kalman filter (KF), namely improved cubature Kalman filter (CKF) based on the combination of singular value decomposition (SVD) and Gauss–Newton iterative technology is employed to develop a reliable estimator for SOC. Furthermore, an adaptive robust strategy is used to improve anti-interference performance by accounting for bidirectional adjustment of observation covariance and gain matrix. Finally, the Dynamic Stress Test (DST) and Federal Urban Driving Schedule (FUDS) are loaded on LIB to test the validity of the improved approach. The experiment results demonstrate the effectiveness of the combination of ARMA model and filtering method in terms of SOC estimation. Besides, simulated measurement noise is added to the test data to prove the robustness of the proposed method.</description><subject>Adaptive filters</subject><subject>Auto-regressive and moving average model</subject><subject>Batteries</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Electric vehicles</subject><subject>Estimating techniques</subject><subject>Improved robust strategy</subject><subject>Iterated cubature</subject><subject>Iterative methods</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Noise measurement</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Robustness</subject><subject>Schedules</subject><subject>Singular value decomposition</subject><subject>State of charge</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHPWydJk90FLyJ-oeBFzyGbzGrKdlOTbMGD_93UevY0zLz3Zt48Qs4ZLBgwdbla4CbFBQfWloFsJTsgM9bUouKwVIdkBqJuqrpu1TE5SWkFAKqt5Yx8X9MxbHGg6-BwqDqT0NGUTUYaemo_THxHiin7tck-jLQPkQ4-f_hpXe36zuSM8YtOyY_v1DizyX6LNIZuSpn6gpnfgZ0Kc4pIn8ywNmWPHwp2So56MyQ8-6tz8nZ3-3rzUD2_3D_eXD9XVvAmV6yTvFXYN7WBmkmARojegeHKcqekYX1rl6wWzll0KKUFA2zZc9W5TrFuKebkYr93E8PnVN7RqzDFsZzUXAgAzqGVhcX3LBtDShF7vYnl7_ilGehdzHqldzHrXcx6H3MRXe1FWPxvPUadrMexGPERbdYu-P_kP3uGiG0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Liu, Zheng</creator><creator>Dang, Xuanju</creator><creator>Jing, Benqin</creator><creator>Ji, Jianbo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0626-689X</orcidid><orcidid>https://orcid.org/0000-0002-5733-0436</orcidid></search><sort><creationdate>201912</creationdate><title>A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter</title><author>Liu, Zheng ; Dang, Xuanju ; Jing, Benqin ; Ji, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-1b5296ef87a071500833fd0a26c2d65a1f9c4173ddcede55c0a014f26bdb61b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive filters</topic><topic>Auto-regressive and moving average model</topic><topic>Batteries</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Electric vehicles</topic><topic>Estimating techniques</topic><topic>Improved robust strategy</topic><topic>Iterated cubature</topic><topic>Iterative methods</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Noise measurement</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Robustness</topic><topic>Schedules</topic><topic>Singular value decomposition</topic><topic>State of charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Dang, Xuanju</creatorcontrib><creatorcontrib>Jing, Benqin</creatorcontrib><creatorcontrib>Ji, Jianbo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zheng</au><au>Dang, Xuanju</au><au>Jing, Benqin</au><au>Ji, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter</atitle><jtitle>Electric power systems research</jtitle><date>2019-12</date><risdate>2019</risdate><volume>177</volume><spage>105951</spage><pages>105951-</pages><artnum>105951</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•The dynamic property of lithium‐ion battery is approximated by the ARMA model.•An improved cubature Kalman filter is employed to develop a reliable estimator for SOC.•An adaptive robust strategy is used to improve anti‐interference performance of SOC estimation. Accurate and robust state of charge (SOC) estimation is the key evaluation index for battery management system (BMS) in electric vehicles (EVs). To improve the SOC estimation precision and reliability, a novel model-based estimation approach has been proposed. Firstly, the dynamic property of lithium-ion battery (LIB) is approximated by the auto-regressive and moving average (ARMA) model which compensates the measurement errors of terminal voltage and discharge current. Secondly, a variant of the Kalman filter (KF), namely improved cubature Kalman filter (CKF) based on the combination of singular value decomposition (SVD) and Gauss–Newton iterative technology is employed to develop a reliable estimator for SOC. Furthermore, an adaptive robust strategy is used to improve anti-interference performance by accounting for bidirectional adjustment of observation covariance and gain matrix. Finally, the Dynamic Stress Test (DST) and Federal Urban Driving Schedule (FUDS) are loaded on LIB to test the validity of the improved approach. The experiment results demonstrate the effectiveness of the combination of ARMA model and filtering method in terms of SOC estimation. Besides, simulated measurement noise is added to the test data to prove the robustness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2019.105951</doi><orcidid>https://orcid.org/0000-0003-0626-689X</orcidid><orcidid>https://orcid.org/0000-0002-5733-0436</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2019-12, Vol.177, p.105951, Article 105951
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2330022095
source Access via ScienceDirect (Elsevier)
subjects Adaptive filters
Auto-regressive and moving average model
Batteries
Computer simulation
Covariance
Electric vehicles
Estimating techniques
Improved robust strategy
Iterated cubature
Iterative methods
Kalman filter
Kalman filters
Lithium
Lithium-ion batteries
Lithium-ion battery
Noise measurement
Power management
Rechargeable batteries
Robustness
Schedules
Singular value decomposition
State of charge
title A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20model-based%20state%20of%20charge%20estimation%20for%20lithium-ion%20battery%20using%20adaptive%20robust%20iterative%20cubature%20Kalman%20filter&rft.jtitle=Electric%20power%20systems%20research&rft.au=Liu,%20Zheng&rft.date=2019-12&rft.volume=177&rft.spage=105951&rft.pages=105951-&rft.artnum=105951&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2019.105951&rft_dat=%3Cproquest_cross%3E2330022095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330022095&rft_id=info:pmid/&rft_els_id=S0378779619302706&rfr_iscdi=true