Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system
A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce...
Gespeichert in:
Veröffentlicht in: | Calphad 2019-12, Vol.67, p.101680, Article 101680 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 101680 |
container_title | Calphad |
container_volume | 67 |
creator | Prostakova, Viktoria Shishin, Denis Shevchenko, Maksym Jak, Evgueni |
description | A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling.
[Display omitted] |
doi_str_mv | 10.1016/j.calphad.2019.101680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330021088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591619301075</els_id><sourcerecordid>2330021088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBKRIrFPGjpPaK1RVFCpVyoLuLceZqI6auNgpoqy4AzfkJKRN92xmNKP35ucj5J7ChALNHuuJ0dvdRpcTBlSeegIuyIiKaRIzKfglGUGS8TiVNLsmNyHUADBNEj4iy_UGfePKQ6sbayK362xjv3RnXRu5Kuo2GM22LE9-v38WmJ_iUL3ZnEXu05YYhUPosLklV5XeBrw75zFZL57X89d4lb8s57NVbHgKXTzlGsXxKG4KKgvQIIEJEFwKyWjJaVEgStQpY1gWhlUF54XOMpkykVGdjMnDMHbn3fseQ6dqt_dtv1GxJAFgFIToVemgMt6F4LFSO28b7Q-KgjoCUrU6Q1NHaGqA1vueBh_2H3xY9CoYi63B0no0nSqd_WfCH7y-eJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330021088</pqid></control><display><type>article</type><title>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Prostakova, Viktoria ; Shishin, Denis ; Shevchenko, Maksym ; Jak, Evgueni</creator><creatorcontrib>Prostakova, Viktoria ; Shishin, Denis ; Shevchenko, Maksym ; Jak, Evgueni</creatorcontrib><description>A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling.
[Display omitted]</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2019.101680</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Alumina ; Aluminum oxide ; Antimony ; Bismuth ; Copper ; Energy conservation ; Gold ; Iron ; Iron oxide ; Liquidus ; Literature reviews ; Magnesium ; Modelling ; Mullite ; Optimization ; Organic chemistry ; Parameters ; Phase diagrams ; Phase equilibria ; Phases ; Silica ; Silicon dioxide ; Slag ; Slags ; Smelting ; Thermodynamic equilibrium ; Thermodynamic modeling ; Thermodynamic properties ; Zinc</subject><ispartof>Calphad, 2019-12, Vol.67, p.101680, Article 101680</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</citedby><cites>FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.calphad.2019.101680$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Prostakova, Viktoria</creatorcontrib><creatorcontrib>Shishin, Denis</creatorcontrib><creatorcontrib>Shevchenko, Maksym</creatorcontrib><creatorcontrib>Jak, Evgueni</creatorcontrib><title>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</title><title>Calphad</title><description>A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling.
[Display omitted]</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Antimony</subject><subject>Bismuth</subject><subject>Copper</subject><subject>Energy conservation</subject><subject>Gold</subject><subject>Iron</subject><subject>Iron oxide</subject><subject>Liquidus</subject><subject>Literature reviews</subject><subject>Magnesium</subject><subject>Modelling</subject><subject>Mullite</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Phase equilibria</subject><subject>Phases</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slag</subject><subject>Slags</subject><subject>Smelting</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic modeling</subject><subject>Thermodynamic properties</subject><subject>Zinc</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBKRIrFPGjpPaK1RVFCpVyoLuLceZqI6auNgpoqy4AzfkJKRN92xmNKP35ucj5J7ChALNHuuJ0dvdRpcTBlSeegIuyIiKaRIzKfglGUGS8TiVNLsmNyHUADBNEj4iy_UGfePKQ6sbayK362xjv3RnXRu5Kuo2GM22LE9-v38WmJ_iUL3ZnEXu05YYhUPosLklV5XeBrw75zFZL57X89d4lb8s57NVbHgKXTzlGsXxKG4KKgvQIIEJEFwKyWjJaVEgStQpY1gWhlUF54XOMpkykVGdjMnDMHbn3fseQ6dqt_dtv1GxJAFgFIToVemgMt6F4LFSO28b7Q-KgjoCUrU6Q1NHaGqA1vueBh_2H3xY9CoYi63B0no0nSqd_WfCH7y-eJQ</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Prostakova, Viktoria</creator><creator>Shishin, Denis</creator><creator>Shevchenko, Maksym</creator><creator>Jak, Evgueni</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201912</creationdate><title>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</title><author>Prostakova, Viktoria ; Shishin, Denis ; Shevchenko, Maksym ; Jak, Evgueni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Antimony</topic><topic>Bismuth</topic><topic>Copper</topic><topic>Energy conservation</topic><topic>Gold</topic><topic>Iron</topic><topic>Iron oxide</topic><topic>Liquidus</topic><topic>Literature reviews</topic><topic>Magnesium</topic><topic>Modelling</topic><topic>Mullite</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Phase equilibria</topic><topic>Phases</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slag</topic><topic>Slags</topic><topic>Smelting</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic modeling</topic><topic>Thermodynamic properties</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prostakova, Viktoria</creatorcontrib><creatorcontrib>Shishin, Denis</creatorcontrib><creatorcontrib>Shevchenko, Maksym</creatorcontrib><creatorcontrib>Jak, Evgueni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prostakova, Viktoria</au><au>Shishin, Denis</au><au>Shevchenko, Maksym</au><au>Jak, Evgueni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</atitle><jtitle>Calphad</jtitle><date>2019-12</date><risdate>2019</risdate><volume>67</volume><spage>101680</spage><pages>101680-</pages><artnum>101680</artnum><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling.
[Display omitted]</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2019.101680</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-5916 |
ispartof | Calphad, 2019-12, Vol.67, p.101680, Article 101680 |
issn | 0364-5916 1873-2984 |
language | eng |
recordid | cdi_proquest_journals_2330021088 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alumina Aluminum oxide Antimony Bismuth Copper Energy conservation Gold Iron Iron oxide Liquidus Literature reviews Magnesium Modelling Mullite Optimization Organic chemistry Parameters Phase diagrams Phase equilibria Phases Silica Silicon dioxide Slag Slags Smelting Thermodynamic equilibrium Thermodynamic modeling Thermodynamic properties Zinc |
title | Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20optimization%20of%20the%20Al2O3%E2%80%93FeO%E2%80%93Fe2O3%E2%80%93SiO2%20oxide%20system&rft.jtitle=Calphad&rft.au=Prostakova,%20Viktoria&rft.date=2019-12&rft.volume=67&rft.spage=101680&rft.pages=101680-&rft.artnum=101680&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2019.101680&rft_dat=%3Cproquest_cross%3E2330021088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330021088&rft_id=info:pmid/&rft_els_id=S0364591619301075&rfr_iscdi=true |