Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system

A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calphad 2019-12, Vol.67, p.101680, Article 101680
Hauptverfasser: Prostakova, Viktoria, Shishin, Denis, Shevchenko, Maksym, Jak, Evgueni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101680
container_title Calphad
container_volume 67
creator Prostakova, Viktoria
Shishin, Denis
Shevchenko, Maksym
Jak, Evgueni
description A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling. [Display omitted]
doi_str_mv 10.1016/j.calphad.2019.101680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330021088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591619301075</els_id><sourcerecordid>2330021088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBKRIrFPGjpPaK1RVFCpVyoLuLceZqI6auNgpoqy4AzfkJKRN92xmNKP35ucj5J7ChALNHuuJ0dvdRpcTBlSeegIuyIiKaRIzKfglGUGS8TiVNLsmNyHUADBNEj4iy_UGfePKQ6sbayK362xjv3RnXRu5Kuo2GM22LE9-v38WmJ_iUL3ZnEXu05YYhUPosLklV5XeBrw75zFZL57X89d4lb8s57NVbHgKXTzlGsXxKG4KKgvQIIEJEFwKyWjJaVEgStQpY1gWhlUF54XOMpkykVGdjMnDMHbn3fseQ6dqt_dtv1GxJAFgFIToVemgMt6F4LFSO28b7Q-KgjoCUrU6Q1NHaGqA1vueBh_2H3xY9CoYi63B0no0nSqd_WfCH7y-eJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330021088</pqid></control><display><type>article</type><title>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Prostakova, Viktoria ; Shishin, Denis ; Shevchenko, Maksym ; Jak, Evgueni</creator><creatorcontrib>Prostakova, Viktoria ; Shishin, Denis ; Shevchenko, Maksym ; Jak, Evgueni</creatorcontrib><description>A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling. [Display omitted]</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2019.101680</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Alumina ; Aluminum oxide ; Antimony ; Bismuth ; Copper ; Energy conservation ; Gold ; Iron ; Iron oxide ; Liquidus ; Literature reviews ; Magnesium ; Modelling ; Mullite ; Optimization ; Organic chemistry ; Parameters ; Phase diagrams ; Phase equilibria ; Phases ; Silica ; Silicon dioxide ; Slag ; Slags ; Smelting ; Thermodynamic equilibrium ; Thermodynamic modeling ; Thermodynamic properties ; Zinc</subject><ispartof>Calphad, 2019-12, Vol.67, p.101680, Article 101680</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</citedby><cites>FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.calphad.2019.101680$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Prostakova, Viktoria</creatorcontrib><creatorcontrib>Shishin, Denis</creatorcontrib><creatorcontrib>Shevchenko, Maksym</creatorcontrib><creatorcontrib>Jak, Evgueni</creatorcontrib><title>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</title><title>Calphad</title><description>A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling. [Display omitted]</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Antimony</subject><subject>Bismuth</subject><subject>Copper</subject><subject>Energy conservation</subject><subject>Gold</subject><subject>Iron</subject><subject>Iron oxide</subject><subject>Liquidus</subject><subject>Literature reviews</subject><subject>Magnesium</subject><subject>Modelling</subject><subject>Mullite</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Phase equilibria</subject><subject>Phases</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slag</subject><subject>Slags</subject><subject>Smelting</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic modeling</subject><subject>Thermodynamic properties</subject><subject>Zinc</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBKRIrFPGjpPaK1RVFCpVyoLuLceZqI6auNgpoqy4AzfkJKRN92xmNKP35ucj5J7ChALNHuuJ0dvdRpcTBlSeegIuyIiKaRIzKfglGUGS8TiVNLsmNyHUADBNEj4iy_UGfePKQ6sbayK362xjv3RnXRu5Kuo2GM22LE9-v38WmJ_iUL3ZnEXu05YYhUPosLklV5XeBrw75zFZL57X89d4lb8s57NVbHgKXTzlGsXxKG4KKgvQIIEJEFwKyWjJaVEgStQpY1gWhlUF54XOMpkykVGdjMnDMHbn3fseQ6dqt_dtv1GxJAFgFIToVemgMt6F4LFSO28b7Q-KgjoCUrU6Q1NHaGqA1vueBh_2H3xY9CoYi63B0no0nSqd_WfCH7y-eJQ</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Prostakova, Viktoria</creator><creator>Shishin, Denis</creator><creator>Shevchenko, Maksym</creator><creator>Jak, Evgueni</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201912</creationdate><title>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</title><author>Prostakova, Viktoria ; Shishin, Denis ; Shevchenko, Maksym ; Jak, Evgueni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-74ae829844cb19b0a0902808498921d41bbee9ea522edbc2fb44ba66952861a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Antimony</topic><topic>Bismuth</topic><topic>Copper</topic><topic>Energy conservation</topic><topic>Gold</topic><topic>Iron</topic><topic>Iron oxide</topic><topic>Liquidus</topic><topic>Literature reviews</topic><topic>Magnesium</topic><topic>Modelling</topic><topic>Mullite</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Phase equilibria</topic><topic>Phases</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slag</topic><topic>Slags</topic><topic>Smelting</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic modeling</topic><topic>Thermodynamic properties</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prostakova, Viktoria</creatorcontrib><creatorcontrib>Shishin, Denis</creatorcontrib><creatorcontrib>Shevchenko, Maksym</creatorcontrib><creatorcontrib>Jak, Evgueni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prostakova, Viktoria</au><au>Shishin, Denis</au><au>Shevchenko, Maksym</au><au>Jak, Evgueni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system</atitle><jtitle>Calphad</jtitle><date>2019-12</date><risdate>2019</risdate><volume>67</volume><spage>101680</spage><pages>101680-</pages><artnum>101680</artnum><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>A complete literature review, critical assessment, and thermodynamic modeling of the phase diagrams and thermodynamic properties of oxide phases in the Al2O3–FeO–Fe2O3–SiO2 system at a total pressure of 1 atm are presented. A set of optimized model parameters for all phases was obtained to reproduce all previously published thermodynamic and phase equilibrium data. Some discrepancies in the literature data were identified, particularly for liquidus measurements and the Fe3+/(Fe2+ + Fe3+) ratio in the slag phase (liquid oxide phase) at high temperatures. Analysis of internal consistency with the Al2O3–FeO–Fe2O3, FeO–Fe2O3–SiO2 and Al2O3–SiO2 sub-systems allowed to resolve the discrepancies. Previously published model parameters for the slag phase in the Al2O3–FeO–Fe2O3 system were slightly modified to achieve better overall agreement. The final set of model parameters for oxide phases reproduces all available data within experimental error limits. The Modified Quasichemical Model was used for modeling of the slag phase. The models based on the Compound Energy Formalism were applied for spinel and mullite solid oxide solutions. The database of model parameters optimized in the present study can be used along with software for Gibbs energy minimization to describe thermodynamic equilibria at all compositions and oxygen partial pressures, from the lowest corresponding to equilibrium with metal up to the highest P(O2) of 1 atm. The database was incorporated into the larger database for the multi-component Al–Ca–Cu–Fe–Mg–Pb–Zn–O–S–Si–(As, Sb, Bi, Sn, Ag, Au, Ni) chemical system and successfully used for calculations of equilibria relevant to copper, lead, zinc smelting and recycling. [Display omitted]</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2019.101680</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-5916
ispartof Calphad, 2019-12, Vol.67, p.101680, Article 101680
issn 0364-5916
1873-2984
language eng
recordid cdi_proquest_journals_2330021088
source ScienceDirect Journals (5 years ago - present)
subjects Alumina
Aluminum oxide
Antimony
Bismuth
Copper
Energy conservation
Gold
Iron
Iron oxide
Liquidus
Literature reviews
Magnesium
Modelling
Mullite
Optimization
Organic chemistry
Parameters
Phase diagrams
Phase equilibria
Phases
Silica
Silicon dioxide
Slag
Slags
Smelting
Thermodynamic equilibrium
Thermodynamic modeling
Thermodynamic properties
Zinc
title Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20optimization%20of%20the%20Al2O3%E2%80%93FeO%E2%80%93Fe2O3%E2%80%93SiO2%20oxide%20system&rft.jtitle=Calphad&rft.au=Prostakova,%20Viktoria&rft.date=2019-12&rft.volume=67&rft.spage=101680&rft.pages=101680-&rft.artnum=101680&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2019.101680&rft_dat=%3Cproquest_cross%3E2330021088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330021088&rft_id=info:pmid/&rft_els_id=S0364591619301075&rfr_iscdi=true