Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species

The development of metrics derived from LiDAR to quantify structural attributes of forests has contributed to substantial advances in wildlife-habitat modeling. However, further exploration of the numerous metrics available for quantifying canopy complexity could improve models of forest wildlife ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2020-01, Vol.236, p.111499, Article 111499
Hauptverfasser: Hagar, Joan C., Yost, Andrew, Haggerty, Patricia K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111499
container_title Remote sensing of environment
container_volume 236
creator Hagar, Joan C.
Yost, Andrew
Haggerty, Patricia K.
description The development of metrics derived from LiDAR to quantify structural attributes of forests has contributed to substantial advances in wildlife-habitat modeling. However, further exploration of the numerous metrics available for quantifying canopy complexity could improve models of forest wildlife habitat while simultaneously increasing understanding of wildlife-habitat relationships. We used the full set of metrics available in the LiDAR-processing software FUSION, including several structural metrics that have not previously been used in published habitat models, to identify those that best quantify structural attributes associated with nest site occupancy by the Northern Spotted Owl (NSO; Strix occidentalis caurina). We identified the best subset of predictor variables for building a parsimonious predictive model using an objective selection process of alternative MaxEnt models. The simple metric maximum canopy height was the single best predictor of NSO occupancy, but three rarely used structural metrics included in our final model provided a novel means of describing the distribution of vegetation throughout the canopy height profile. These metrics critically contributed to the model's ability to distinguish small patches of structurally complex suitable habitat within a matrix of structurally simple intermediate-aged forest. Our results indicate the potential value of rarely used LiDAR metrics readily available for objectively quantifying ecologically important but previously inaccessible habitat attributes for arboreal species. •We investigated use of LiDAR metrics to improve habitat models for arboreal species.•Maximum canopy height was the single best predictor of use by northern spotted owl.•Additional 3D metrics separated structurally complex forest from unsuitable habitat.•LiDAR metrics quantify ecologically important habitat features for arboreal species.
doi_str_mv 10.1016/j.rse.2019.111499
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330020574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425719305188</els_id><sourcerecordid>2330020574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3be9105a730b9abd5d840d6611cf7b367cf8e3d8462c17bcd6e573fa2337696f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLuA645J0yYtrobxCgOC6NaQJqea0mlqkirz9maoa1cHDt9_Lh9Cl5SsKKH8ulv5AKuc0HpFKS3q-ggtaCXqjAhSHKMFIazIirwUp-gshI4QWlaCLtD706CdH51X0Q4feGtv1y94B9FbHbAdosMKh-gnHScPWaMCGPypGhtVxDtnoMet84nRanDjPjM_0PeHQWEEbSGco5NW9QEu_uoSvd3fvW4es-3zw9Nmvc00E1XMWAM1JaUSjDS1akxpqoIYzinVrWgYF7qtgKUmzzUVjTYcSsFalTMmeM1btkRX89zRu68JQpSdm_yQVsrEEJKTUhSJojOlvQvBQytHb3fK7yUl8qBRdjJplAeNctaYMjdzBtL53xa8DOmxQYOxHnSUxtl_0r_rZXrx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330020574</pqid></control><display><type>article</type><title>Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species</title><source>Elsevier ScienceDirect Journals</source><creator>Hagar, Joan C. ; Yost, Andrew ; Haggerty, Patricia K.</creator><creatorcontrib>Hagar, Joan C. ; Yost, Andrew ; Haggerty, Patricia K.</creatorcontrib><description>The development of metrics derived from LiDAR to quantify structural attributes of forests has contributed to substantial advances in wildlife-habitat modeling. However, further exploration of the numerous metrics available for quantifying canopy complexity could improve models of forest wildlife habitat while simultaneously increasing understanding of wildlife-habitat relationships. We used the full set of metrics available in the LiDAR-processing software FUSION, including several structural metrics that have not previously been used in published habitat models, to identify those that best quantify structural attributes associated with nest site occupancy by the Northern Spotted Owl (NSO; Strix occidentalis caurina). We identified the best subset of predictor variables for building a parsimonious predictive model using an objective selection process of alternative MaxEnt models. The simple metric maximum canopy height was the single best predictor of NSO occupancy, but three rarely used structural metrics included in our final model provided a novel means of describing the distribution of vegetation throughout the canopy height profile. These metrics critically contributed to the model's ability to distinguish small patches of structurally complex suitable habitat within a matrix of structurally simple intermediate-aged forest. Our results indicate the potential value of rarely used LiDAR metrics readily available for objectively quantifying ecologically important but previously inaccessible habitat attributes for arboreal species. •We investigated use of LiDAR metrics to improve habitat models for arboreal species.•Maximum canopy height was the single best predictor of use by northern spotted owl.•Additional 3D metrics separated structurally complex forest from unsuitable habitat.•LiDAR metrics quantify ecologically important habitat features for arboreal species.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2019.111499</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Canopies ; Canopy height ; Complexity ; Forest structure ; Forests ; FUSION ; Habitats ; Lidar ; Light detection and ranging (LiDAR) ; Occupancy ; Owls ; Prediction models ; Strix occidentalis caurina ; Wildlife habitat ; Wildlife habitats</subject><ispartof>Remote sensing of environment, 2020-01, Vol.236, p.111499, Article 111499</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3be9105a730b9abd5d840d6611cf7b367cf8e3d8462c17bcd6e573fa2337696f3</citedby><cites>FETCH-LOGICAL-c378t-3be9105a730b9abd5d840d6611cf7b367cf8e3d8462c17bcd6e573fa2337696f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425719305188$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hagar, Joan C.</creatorcontrib><creatorcontrib>Yost, Andrew</creatorcontrib><creatorcontrib>Haggerty, Patricia K.</creatorcontrib><title>Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species</title><title>Remote sensing of environment</title><description>The development of metrics derived from LiDAR to quantify structural attributes of forests has contributed to substantial advances in wildlife-habitat modeling. However, further exploration of the numerous metrics available for quantifying canopy complexity could improve models of forest wildlife habitat while simultaneously increasing understanding of wildlife-habitat relationships. We used the full set of metrics available in the LiDAR-processing software FUSION, including several structural metrics that have not previously been used in published habitat models, to identify those that best quantify structural attributes associated with nest site occupancy by the Northern Spotted Owl (NSO; Strix occidentalis caurina). We identified the best subset of predictor variables for building a parsimonious predictive model using an objective selection process of alternative MaxEnt models. The simple metric maximum canopy height was the single best predictor of NSO occupancy, but three rarely used structural metrics included in our final model provided a novel means of describing the distribution of vegetation throughout the canopy height profile. These metrics critically contributed to the model's ability to distinguish small patches of structurally complex suitable habitat within a matrix of structurally simple intermediate-aged forest. Our results indicate the potential value of rarely used LiDAR metrics readily available for objectively quantifying ecologically important but previously inaccessible habitat attributes for arboreal species. •We investigated use of LiDAR metrics to improve habitat models for arboreal species.•Maximum canopy height was the single best predictor of use by northern spotted owl.•Additional 3D metrics separated structurally complex forest from unsuitable habitat.•LiDAR metrics quantify ecologically important habitat features for arboreal species.</description><subject>Canopies</subject><subject>Canopy height</subject><subject>Complexity</subject><subject>Forest structure</subject><subject>Forests</subject><subject>FUSION</subject><subject>Habitats</subject><subject>Lidar</subject><subject>Light detection and ranging (LiDAR)</subject><subject>Occupancy</subject><subject>Owls</subject><subject>Prediction models</subject><subject>Strix occidentalis caurina</subject><subject>Wildlife habitat</subject><subject>Wildlife habitats</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLuA645J0yYtrobxCgOC6NaQJqea0mlqkirz9maoa1cHDt9_Lh9Cl5SsKKH8ulv5AKuc0HpFKS3q-ggtaCXqjAhSHKMFIazIirwUp-gshI4QWlaCLtD706CdH51X0Q4feGtv1y94B9FbHbAdosMKh-gnHScPWaMCGPypGhtVxDtnoMet84nRanDjPjM_0PeHQWEEbSGco5NW9QEu_uoSvd3fvW4es-3zw9Nmvc00E1XMWAM1JaUSjDS1akxpqoIYzinVrWgYF7qtgKUmzzUVjTYcSsFalTMmeM1btkRX89zRu68JQpSdm_yQVsrEEJKTUhSJojOlvQvBQytHb3fK7yUl8qBRdjJplAeNctaYMjdzBtL53xa8DOmxQYOxHnSUxtl_0r_rZXrx</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Hagar, Joan C.</creator><creator>Yost, Andrew</creator><creator>Haggerty, Patricia K.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>202001</creationdate><title>Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species</title><author>Hagar, Joan C. ; Yost, Andrew ; Haggerty, Patricia K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3be9105a730b9abd5d840d6611cf7b367cf8e3d8462c17bcd6e573fa2337696f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Canopies</topic><topic>Canopy height</topic><topic>Complexity</topic><topic>Forest structure</topic><topic>Forests</topic><topic>FUSION</topic><topic>Habitats</topic><topic>Lidar</topic><topic>Light detection and ranging (LiDAR)</topic><topic>Occupancy</topic><topic>Owls</topic><topic>Prediction models</topic><topic>Strix occidentalis caurina</topic><topic>Wildlife habitat</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagar, Joan C.</creatorcontrib><creatorcontrib>Yost, Andrew</creatorcontrib><creatorcontrib>Haggerty, Patricia K.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagar, Joan C.</au><au>Yost, Andrew</au><au>Haggerty, Patricia K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species</atitle><jtitle>Remote sensing of environment</jtitle><date>2020-01</date><risdate>2020</risdate><volume>236</volume><spage>111499</spage><pages>111499-</pages><artnum>111499</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The development of metrics derived from LiDAR to quantify structural attributes of forests has contributed to substantial advances in wildlife-habitat modeling. However, further exploration of the numerous metrics available for quantifying canopy complexity could improve models of forest wildlife habitat while simultaneously increasing understanding of wildlife-habitat relationships. We used the full set of metrics available in the LiDAR-processing software FUSION, including several structural metrics that have not previously been used in published habitat models, to identify those that best quantify structural attributes associated with nest site occupancy by the Northern Spotted Owl (NSO; Strix occidentalis caurina). We identified the best subset of predictor variables for building a parsimonious predictive model using an objective selection process of alternative MaxEnt models. The simple metric maximum canopy height was the single best predictor of NSO occupancy, but three rarely used structural metrics included in our final model provided a novel means of describing the distribution of vegetation throughout the canopy height profile. These metrics critically contributed to the model's ability to distinguish small patches of structurally complex suitable habitat within a matrix of structurally simple intermediate-aged forest. Our results indicate the potential value of rarely used LiDAR metrics readily available for objectively quantifying ecologically important but previously inaccessible habitat attributes for arboreal species. •We investigated use of LiDAR metrics to improve habitat models for arboreal species.•Maximum canopy height was the single best predictor of use by northern spotted owl.•Additional 3D metrics separated structurally complex forest from unsuitable habitat.•LiDAR metrics quantify ecologically important habitat features for arboreal species.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2019.111499</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2020-01, Vol.236, p.111499, Article 111499
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2330020574
source Elsevier ScienceDirect Journals
subjects Canopies
Canopy height
Complexity
Forest structure
Forests
FUSION
Habitats
Lidar
Light detection and ranging (LiDAR)
Occupancy
Owls
Prediction models
Strix occidentalis caurina
Wildlife habitat
Wildlife habitats
title Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20LiDAR%20metrics%20into%20a%20structure-based%20habitat%20model%20for%20a%20canopy-dwelling%20species&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Hagar,%20Joan%20C.&rft.date=2020-01&rft.volume=236&rft.spage=111499&rft.pages=111499-&rft.artnum=111499&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2019.111499&rft_dat=%3Cproquest_cross%3E2330020574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330020574&rft_id=info:pmid/&rft_els_id=S0034425719305188&rfr_iscdi=true