Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors

Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2020-01, Vol.31 (1), p.171-186
Hauptverfasser: Cho, Hyeonjoong, Kim, Chulgoo, Sun, Joohyung, Easwaran, Arvind, Park, Ju-Derk, Choi, Byeong-Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 171
container_title IEEE transactions on parallel and distributed systems
container_volume 31
creator Cho, Hyeonjoong
Kim, Chulgoo
Sun, Joohyung
Easwaran, Arvind
Park, Ju-Derk
Choi, Byeong-Cheol
description Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.
doi_str_mv 10.1109/TPDS.2019.2929048
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2330016873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8770295</ieee_id><sourcerecordid>2330016873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwAIjFEnOKfY5je0SFFqQCFc1uucmFpiRxsZuBtydVK6a74fvv9H-E3HI24ZyZh3z5tJoA42YCBgxL9RkZcSl1AlyL82FnqUwMcHNJrmLcMsZTydIRma-KDZZ9U3dfdOmCaxps6Ce6JsnrFmnu4nekvqP7DdK3uqvbvqXvfbvGQH1Fl8EXGKMP8ZpcVK6JeHOaY5LPnvPpS7L4mL9OHxdJAUbsEyNcplECEwhV4RyAEmtWosmGEiqrRFoCIhsYUymlQAtZprxSsC6MdFKMyf3x7C74nx7j3m59H7rhowUhhlaZVmKg-JEqgo8xYGV3oW5d-LWc2YMue9BlD7rsSdeQuTtmakT857VSDIwUf6WBZPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330016873</pqid></control><display><type>article</type><title>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</title><source>IEEE Electronic Library (IEL)</source><creator>Cho, Hyeonjoong ; Kim, Chulgoo ; Sun, Joohyung ; Easwaran, Arvind ; Park, Ju-Derk ; Choi, Byeong-Cheol</creator><creatorcontrib>Cho, Hyeonjoong ; Kim, Chulgoo ; Sun, Joohyung ; Easwaran, Arvind ; Park, Ju-Derk ; Choi, Byeong-Cheol</creatorcontrib><description>Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2929048</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; flow networks ; Job shops ; linear programming ; maximum flow problem ; minimum cost flow problem ; Multicore processing ; multicores ; multiprocessors ; Optimization ; Polynomials ; Precedence constraints ; Processor scheduling ; Processors ; Production scheduling ; Program processors ; Real time ; Real-time scheduling ; Real-time systems ; Scheduling ; Task analysis ; Task scheduling</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-01, Vol.31 (1), p.171-186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</citedby><cites>FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</cites><orcidid>0000-0003-1487-895X ; 0000-0002-9628-3847 ; 0000-0002-3177-6595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8770295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8770295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cho, Hyeonjoong</creatorcontrib><creatorcontrib>Kim, Chulgoo</creatorcontrib><creatorcontrib>Sun, Joohyung</creatorcontrib><creatorcontrib>Easwaran, Arvind</creatorcontrib><creatorcontrib>Park, Ju-Derk</creatorcontrib><creatorcontrib>Choi, Byeong-Cheol</creatorcontrib><title>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.</description><subject>Computational modeling</subject><subject>flow networks</subject><subject>Job shops</subject><subject>linear programming</subject><subject>maximum flow problem</subject><subject>minimum cost flow problem</subject><subject>Multicore processing</subject><subject>multicores</subject><subject>multiprocessors</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Precedence constraints</subject><subject>Processor scheduling</subject><subject>Processors</subject><subject>Production scheduling</subject><subject>Program processors</subject><subject>Real time</subject><subject>Real-time scheduling</subject><subject>Real-time systems</subject><subject>Scheduling</subject><subject>Task analysis</subject><subject>Task scheduling</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhi0EEqXwAIjFEnOKfY5je0SFFqQCFc1uucmFpiRxsZuBtydVK6a74fvv9H-E3HI24ZyZh3z5tJoA42YCBgxL9RkZcSl1AlyL82FnqUwMcHNJrmLcMsZTydIRma-KDZZ9U3dfdOmCaxps6Ce6JsnrFmnu4nekvqP7DdK3uqvbvqXvfbvGQH1Fl8EXGKMP8ZpcVK6JeHOaY5LPnvPpS7L4mL9OHxdJAUbsEyNcplECEwhV4RyAEmtWosmGEiqrRFoCIhsYUymlQAtZprxSsC6MdFKMyf3x7C74nx7j3m59H7rhowUhhlaZVmKg-JEqgo8xYGV3oW5d-LWc2YMue9BlD7rsSdeQuTtmakT857VSDIwUf6WBZPQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cho, Hyeonjoong</creator><creator>Kim, Chulgoo</creator><creator>Sun, Joohyung</creator><creator>Easwaran, Arvind</creator><creator>Park, Ju-Derk</creator><creator>Choi, Byeong-Cheol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1487-895X</orcidid><orcidid>https://orcid.org/0000-0002-9628-3847</orcidid><orcidid>https://orcid.org/0000-0002-3177-6595</orcidid></search><sort><creationdate>20200101</creationdate><title>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</title><author>Cho, Hyeonjoong ; Kim, Chulgoo ; Sun, Joohyung ; Easwaran, Arvind ; Park, Ju-Derk ; Choi, Byeong-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>flow networks</topic><topic>Job shops</topic><topic>linear programming</topic><topic>maximum flow problem</topic><topic>minimum cost flow problem</topic><topic>Multicore processing</topic><topic>multicores</topic><topic>multiprocessors</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Precedence constraints</topic><topic>Processor scheduling</topic><topic>Processors</topic><topic>Production scheduling</topic><topic>Program processors</topic><topic>Real time</topic><topic>Real-time scheduling</topic><topic>Real-time systems</topic><topic>Scheduling</topic><topic>Task analysis</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyeonjoong</creatorcontrib><creatorcontrib>Kim, Chulgoo</creatorcontrib><creatorcontrib>Sun, Joohyung</creatorcontrib><creatorcontrib>Easwaran, Arvind</creatorcontrib><creatorcontrib>Park, Ju-Derk</creatorcontrib><creatorcontrib>Choi, Byeong-Cheol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Hyeonjoong</au><au>Kim, Chulgoo</au><au>Sun, Joohyung</au><au>Easwaran, Arvind</au><au>Park, Ju-Derk</au><au>Choi, Byeong-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>171</spage><epage>186</epage><pages>171-186</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2929048</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1487-895X</orcidid><orcidid>https://orcid.org/0000-0002-9628-3847</orcidid><orcidid>https://orcid.org/0000-0002-3177-6595</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2020-01, Vol.31 (1), p.171-186
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_2330016873
source IEEE Electronic Library (IEL)
subjects Computational modeling
flow networks
Job shops
linear programming
maximum flow problem
minimum cost flow problem
Multicore processing
multicores
multiprocessors
Optimization
Polynomials
Precedence constraints
Processor scheduling
Processors
Production scheduling
Program processors
Real time
Real-time scheduling
Real-time systems
Scheduling
Task analysis
Task scheduling
title Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Parallel%20Real-Time%20Tasks%20on%20the%20Minimum%20Number%20of%20Processors&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Cho,%20Hyeonjoong&rft.date=2020-01-01&rft.volume=31&rft.issue=1&rft.spage=171&rft.epage=186&rft.pages=171-186&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2929048&rft_dat=%3Cproquest_RIE%3E2330016873%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330016873&rft_id=info:pmid/&rft_ieee_id=8770295&rfr_iscdi=true