Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors
Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2020-01, Vol.31 (1), p.171-186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 31 |
creator | Cho, Hyeonjoong Kim, Chulgoo Sun, Joohyung Easwaran, Arvind Park, Ju-Derk Choi, Byeong-Cheol |
description | Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study. |
doi_str_mv | 10.1109/TPDS.2019.2929048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2330016873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8770295</ieee_id><sourcerecordid>2330016873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwAIjFEnOKfY5je0SFFqQCFc1uucmFpiRxsZuBtydVK6a74fvv9H-E3HI24ZyZh3z5tJoA42YCBgxL9RkZcSl1AlyL82FnqUwMcHNJrmLcMsZTydIRma-KDZZ9U3dfdOmCaxps6Ce6JsnrFmnu4nekvqP7DdK3uqvbvqXvfbvGQH1Fl8EXGKMP8ZpcVK6JeHOaY5LPnvPpS7L4mL9OHxdJAUbsEyNcplECEwhV4RyAEmtWosmGEiqrRFoCIhsYUymlQAtZprxSsC6MdFKMyf3x7C74nx7j3m59H7rhowUhhlaZVmKg-JEqgo8xYGV3oW5d-LWc2YMue9BlD7rsSdeQuTtmakT857VSDIwUf6WBZPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330016873</pqid></control><display><type>article</type><title>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</title><source>IEEE Electronic Library (IEL)</source><creator>Cho, Hyeonjoong ; Kim, Chulgoo ; Sun, Joohyung ; Easwaran, Arvind ; Park, Ju-Derk ; Choi, Byeong-Cheol</creator><creatorcontrib>Cho, Hyeonjoong ; Kim, Chulgoo ; Sun, Joohyung ; Easwaran, Arvind ; Park, Ju-Derk ; Choi, Byeong-Cheol</creatorcontrib><description>Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2929048</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; flow networks ; Job shops ; linear programming ; maximum flow problem ; minimum cost flow problem ; Multicore processing ; multicores ; multiprocessors ; Optimization ; Polynomials ; Precedence constraints ; Processor scheduling ; Processors ; Production scheduling ; Program processors ; Real time ; Real-time scheduling ; Real-time systems ; Scheduling ; Task analysis ; Task scheduling</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-01, Vol.31 (1), p.171-186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</citedby><cites>FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</cites><orcidid>0000-0003-1487-895X ; 0000-0002-9628-3847 ; 0000-0002-3177-6595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8770295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8770295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cho, Hyeonjoong</creatorcontrib><creatorcontrib>Kim, Chulgoo</creatorcontrib><creatorcontrib>Sun, Joohyung</creatorcontrib><creatorcontrib>Easwaran, Arvind</creatorcontrib><creatorcontrib>Park, Ju-Derk</creatorcontrib><creatorcontrib>Choi, Byeong-Cheol</creatorcontrib><title>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.</description><subject>Computational modeling</subject><subject>flow networks</subject><subject>Job shops</subject><subject>linear programming</subject><subject>maximum flow problem</subject><subject>minimum cost flow problem</subject><subject>Multicore processing</subject><subject>multicores</subject><subject>multiprocessors</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Precedence constraints</subject><subject>Processor scheduling</subject><subject>Processors</subject><subject>Production scheduling</subject><subject>Program processors</subject><subject>Real time</subject><subject>Real-time scheduling</subject><subject>Real-time systems</subject><subject>Scheduling</subject><subject>Task analysis</subject><subject>Task scheduling</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhi0EEqXwAIjFEnOKfY5je0SFFqQCFc1uucmFpiRxsZuBtydVK6a74fvv9H-E3HI24ZyZh3z5tJoA42YCBgxL9RkZcSl1AlyL82FnqUwMcHNJrmLcMsZTydIRma-KDZZ9U3dfdOmCaxps6Ce6JsnrFmnu4nekvqP7DdK3uqvbvqXvfbvGQH1Fl8EXGKMP8ZpcVK6JeHOaY5LPnvPpS7L4mL9OHxdJAUbsEyNcplECEwhV4RyAEmtWosmGEiqrRFoCIhsYUymlQAtZprxSsC6MdFKMyf3x7C74nx7j3m59H7rhowUhhlaZVmKg-JEqgo8xYGV3oW5d-LWc2YMue9BlD7rsSdeQuTtmakT857VSDIwUf6WBZPQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cho, Hyeonjoong</creator><creator>Kim, Chulgoo</creator><creator>Sun, Joohyung</creator><creator>Easwaran, Arvind</creator><creator>Park, Ju-Derk</creator><creator>Choi, Byeong-Cheol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1487-895X</orcidid><orcidid>https://orcid.org/0000-0002-9628-3847</orcidid><orcidid>https://orcid.org/0000-0002-3177-6595</orcidid></search><sort><creationdate>20200101</creationdate><title>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</title><author>Cho, Hyeonjoong ; Kim, Chulgoo ; Sun, Joohyung ; Easwaran, Arvind ; Park, Ju-Derk ; Choi, Byeong-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-93a68e5203e2fcaa2273b0de9610976f34d2ee068e9f7772835d41f72bc95a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>flow networks</topic><topic>Job shops</topic><topic>linear programming</topic><topic>maximum flow problem</topic><topic>minimum cost flow problem</topic><topic>Multicore processing</topic><topic>multicores</topic><topic>multiprocessors</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Precedence constraints</topic><topic>Processor scheduling</topic><topic>Processors</topic><topic>Production scheduling</topic><topic>Program processors</topic><topic>Real time</topic><topic>Real-time scheduling</topic><topic>Real-time systems</topic><topic>Scheduling</topic><topic>Task analysis</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyeonjoong</creatorcontrib><creatorcontrib>Kim, Chulgoo</creatorcontrib><creatorcontrib>Sun, Joohyung</creatorcontrib><creatorcontrib>Easwaran, Arvind</creatorcontrib><creatorcontrib>Park, Ju-Derk</creatorcontrib><creatorcontrib>Choi, Byeong-Cheol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Hyeonjoong</au><au>Kim, Chulgoo</au><au>Sun, Joohyung</au><au>Easwaran, Arvind</au><au>Park, Ju-Derk</au><au>Choi, Byeong-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>171</spage><epage>186</epage><pages>171-186</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Recently, several parallel frameworks have emerged to utilize the increasing computational capacity of multiprocessors. Parallel tasks are distinguished from traditional sequential tasks in that the subtasks contained in a single parallel task can simultaneously execute on multiple processors. In this study, we consider the scheduling problem of minimizing the number of processors on which the parallel real-time tasks feasibly run. In particular, we focus on scheduling sporadic parallel real-time tasks, in which precedence constraints between subtasks of each parallel task are expressed using a directed acyclic graph (DAG). To address the problem, we formulate an optimization problem that aims to minimize the maximum processing capacity for executing the given tasks. We then suggest a polynomial solution consisting of three steps: (1) transform each parallel real-time task into a series of multithreaded segments, while respecting the precedence constraints of the DAG; (2) selectively extend the segment lengths; and (3) interpret the problem as a flow network to balance the flows on the terminal edges. We also provide the schedulability bound of the proposed solution: it has a capacity augmentation bound of 2. Our experimental results show that the proposed approach yields higher performance than one developed in a recent study.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2929048</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1487-895X</orcidid><orcidid>https://orcid.org/0000-0002-9628-3847</orcidid><orcidid>https://orcid.org/0000-0002-3177-6595</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2020-01, Vol.31 (1), p.171-186 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_proquest_journals_2330016873 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling flow networks Job shops linear programming maximum flow problem minimum cost flow problem Multicore processing multicores multiprocessors Optimization Polynomials Precedence constraints Processor scheduling Processors Production scheduling Program processors Real time Real-time scheduling Real-time systems Scheduling Task analysis Task scheduling |
title | Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scheduling%20Parallel%20Real-Time%20Tasks%20on%20the%20Minimum%20Number%20of%20Processors&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Cho,%20Hyeonjoong&rft.date=2020-01-01&rft.volume=31&rft.issue=1&rft.spage=171&rft.epage=186&rft.pages=171-186&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2929048&rft_dat=%3Cproquest_RIE%3E2330016873%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330016873&rft_id=info:pmid/&rft_ieee_id=8770295&rfr_iscdi=true |