Modeling of Multiferroic Nanoparticle Composites With an Analytical Multiscale Approach

An analytical multiscale approach to the ferromagnetic phase is proposed in modeling multiferroic artificial magnetoelectric (ME) composites constituting of piezoelectric and magnetostrictive nanoparticles under a volume fraction χ. The proposed approach is applied to the practice case of the χCoFe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2020-01, Vol.56 (1), p.1-4
Hauptverfasser: Talleb, Hakeim, Do, Tuan-Anh, Gensbittel, Aurelie, Ren, Zhuoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 1
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 56
creator Talleb, Hakeim
Do, Tuan-Anh
Gensbittel, Aurelie
Ren, Zhuoxiang
description An analytical multiscale approach to the ferromagnetic phase is proposed in modeling multiferroic artificial magnetoelectric (ME) composites constituting of piezoelectric and magnetostrictive nanoparticles under a volume fraction χ. The proposed approach is applied to the practice case of the χCoFe 2 O 4 - (1 - χ)BaTiO 3 composite. The homogenized material properties are incorporated in macroscopic scale to model a ME device using the finite-element method.
doi_str_mv 10.1109/TMAG.2019.2949880
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2330009422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8936597</ieee_id><sourcerecordid>2330009422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c72f45272f4d1dcf66f29c87b2d80d63f2d400218cc6519cbf4ac65932c51ce73</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuHIx9eYxjyyHoq3Q6qbSZUgziU2ZNmMyFfrvzTClm-Te5DuHew9CjxgmGAN_XS2r2YQA5hPCGS9LuEIjzBlOAXJ-jUYAuEw5y9ktugthF1uWYRih9dLVurGHn8SZZHlsOmu0986q5FMeXCt9Z1Wjk6nbty7YTodkbbttIg9JdZDNKf7KZtCFWOmkalvvpNreoxsjm6AfzvcYfb-_rabzdPE1-5hWi1RRUnSpKohhGenPGtfK5LkhXJXFhtQl1Dk1pGYABJdK5RnmamOYjBWnRGVY6YKO0cvgu5WNaL3dS38STloxrxaifwOKc8oZ_OHIPg9sHPH3qEMndu7o4xpBEEoBgDNCIoUHSnkXgtfmYotB9FmLPmvRZy3OWUfN06CxWusLX3IaRy3oPwhIefw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330009422</pqid></control><display><type>article</type><title>Modeling of Multiferroic Nanoparticle Composites With an Analytical Multiscale Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Talleb, Hakeim ; Do, Tuan-Anh ; Gensbittel, Aurelie ; Ren, Zhuoxiang</creator><creatorcontrib>Talleb, Hakeim ; Do, Tuan-Anh ; Gensbittel, Aurelie ; Ren, Zhuoxiang</creatorcontrib><description>An analytical multiscale approach to the ferromagnetic phase is proposed in modeling multiferroic artificial magnetoelectric (ME) composites constituting of piezoelectric and magnetostrictive nanoparticles under a volume fraction χ. The proposed approach is applied to the practice case of the χCoFe 2 O 4 - (1 - χ)BaTiO 3 composite. The homogenized material properties are incorporated in macroscopic scale to model a ME device using the finite-element method.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2019.2949880</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barium titanates ; Composite materials ; Computational modeling ; Electromagnetism ; Energy harvesting ; Engineering Sciences ; Ferromagnetic phases ; Ferromagnetism ; Finite element method ; Magnetic domains ; Magnetic resonance ; Magnetism ; Magnetoelectric effects ; Magnetostriction ; magnetostrictive magnetoelectric (ME) effects ; Material properties ; Modelling ; Multiferroic materials ; Multiscale analysis ; Nanoparticles ; piezoelectric ; Piezoelectricity ; Stress</subject><ispartof>IEEE transactions on magnetics, 2020-01, Vol.56 (1), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c72f45272f4d1dcf66f29c87b2d80d63f2d400218cc6519cbf4ac65932c51ce73</citedby><cites>FETCH-LOGICAL-c327t-c72f45272f4d1dcf66f29c87b2d80d63f2d400218cc6519cbf4ac65932c51ce73</cites><orcidid>0000-0002-4924-2698 ; 0000-0003-4700-8969 ; 0000-0002-2734-6242 ; 0000-0002-0271-0992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8936597$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8936597$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03163940$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Talleb, Hakeim</creatorcontrib><creatorcontrib>Do, Tuan-Anh</creatorcontrib><creatorcontrib>Gensbittel, Aurelie</creatorcontrib><creatorcontrib>Ren, Zhuoxiang</creatorcontrib><title>Modeling of Multiferroic Nanoparticle Composites With an Analytical Multiscale Approach</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>An analytical multiscale approach to the ferromagnetic phase is proposed in modeling multiferroic artificial magnetoelectric (ME) composites constituting of piezoelectric and magnetostrictive nanoparticles under a volume fraction χ. The proposed approach is applied to the practice case of the χCoFe 2 O 4 - (1 - χ)BaTiO 3 composite. The homogenized material properties are incorporated in macroscopic scale to model a ME device using the finite-element method.</description><subject>Barium titanates</subject><subject>Composite materials</subject><subject>Computational modeling</subject><subject>Electromagnetism</subject><subject>Energy harvesting</subject><subject>Engineering Sciences</subject><subject>Ferromagnetic phases</subject><subject>Ferromagnetism</subject><subject>Finite element method</subject><subject>Magnetic domains</subject><subject>Magnetic resonance</subject><subject>Magnetism</subject><subject>Magnetoelectric effects</subject><subject>Magnetostriction</subject><subject>magnetostrictive magnetoelectric (ME) effects</subject><subject>Material properties</subject><subject>Modelling</subject><subject>Multiferroic materials</subject><subject>Multiscale analysis</subject><subject>Nanoparticles</subject><subject>piezoelectric</subject><subject>Piezoelectricity</subject><subject>Stress</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuHIx9eYxjyyHoq3Q6qbSZUgziU2ZNmMyFfrvzTClm-Te5DuHew9CjxgmGAN_XS2r2YQA5hPCGS9LuEIjzBlOAXJ-jUYAuEw5y9ktugthF1uWYRih9dLVurGHn8SZZHlsOmu0986q5FMeXCt9Z1Wjk6nbty7YTodkbbttIg9JdZDNKf7KZtCFWOmkalvvpNreoxsjm6AfzvcYfb-_rabzdPE1-5hWi1RRUnSpKohhGenPGtfK5LkhXJXFhtQl1Dk1pGYABJdK5RnmamOYjBWnRGVY6YKO0cvgu5WNaL3dS38STloxrxaifwOKc8oZ_OHIPg9sHPH3qEMndu7o4xpBEEoBgDNCIoUHSnkXgtfmYotB9FmLPmvRZy3OWUfN06CxWusLX3IaRy3oPwhIefw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Talleb, Hakeim</creator><creator>Do, Tuan-Anh</creator><creator>Gensbittel, Aurelie</creator><creator>Ren, Zhuoxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4924-2698</orcidid><orcidid>https://orcid.org/0000-0003-4700-8969</orcidid><orcidid>https://orcid.org/0000-0002-2734-6242</orcidid><orcidid>https://orcid.org/0000-0002-0271-0992</orcidid></search><sort><creationdate>20200101</creationdate><title>Modeling of Multiferroic Nanoparticle Composites With an Analytical Multiscale Approach</title><author>Talleb, Hakeim ; Do, Tuan-Anh ; Gensbittel, Aurelie ; Ren, Zhuoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c72f45272f4d1dcf66f29c87b2d80d63f2d400218cc6519cbf4ac65932c51ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barium titanates</topic><topic>Composite materials</topic><topic>Computational modeling</topic><topic>Electromagnetism</topic><topic>Energy harvesting</topic><topic>Engineering Sciences</topic><topic>Ferromagnetic phases</topic><topic>Ferromagnetism</topic><topic>Finite element method</topic><topic>Magnetic domains</topic><topic>Magnetic resonance</topic><topic>Magnetism</topic><topic>Magnetoelectric effects</topic><topic>Magnetostriction</topic><topic>magnetostrictive magnetoelectric (ME) effects</topic><topic>Material properties</topic><topic>Modelling</topic><topic>Multiferroic materials</topic><topic>Multiscale analysis</topic><topic>Nanoparticles</topic><topic>piezoelectric</topic><topic>Piezoelectricity</topic><topic>Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Talleb, Hakeim</creatorcontrib><creatorcontrib>Do, Tuan-Anh</creatorcontrib><creatorcontrib>Gensbittel, Aurelie</creatorcontrib><creatorcontrib>Ren, Zhuoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Talleb, Hakeim</au><au>Do, Tuan-Anh</au><au>Gensbittel, Aurelie</au><au>Ren, Zhuoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Multiferroic Nanoparticle Composites With an Analytical Multiscale Approach</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>An analytical multiscale approach to the ferromagnetic phase is proposed in modeling multiferroic artificial magnetoelectric (ME) composites constituting of piezoelectric and magnetostrictive nanoparticles under a volume fraction χ. The proposed approach is applied to the practice case of the χCoFe 2 O 4 - (1 - χ)BaTiO 3 composite. The homogenized material properties are incorporated in macroscopic scale to model a ME device using the finite-element method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2019.2949880</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4924-2698</orcidid><orcidid>https://orcid.org/0000-0003-4700-8969</orcidid><orcidid>https://orcid.org/0000-0002-2734-6242</orcidid><orcidid>https://orcid.org/0000-0002-0271-0992</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2020-01, Vol.56 (1), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2330009422
source IEEE Electronic Library (IEL)
subjects Barium titanates
Composite materials
Computational modeling
Electromagnetism
Energy harvesting
Engineering Sciences
Ferromagnetic phases
Ferromagnetism
Finite element method
Magnetic domains
Magnetic resonance
Magnetism
Magnetoelectric effects
Magnetostriction
magnetostrictive magnetoelectric (ME) effects
Material properties
Modelling
Multiferroic materials
Multiscale analysis
Nanoparticles
piezoelectric
Piezoelectricity
Stress
title Modeling of Multiferroic Nanoparticle Composites With an Analytical Multiscale Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Multiferroic%20Nanoparticle%20Composites%20With%20an%20Analytical%20Multiscale%20Approach&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Talleb,%20Hakeim&rft.date=2020-01-01&rft.volume=56&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2019.2949880&rft_dat=%3Cproquest_RIE%3E2330009422%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330009422&rft_id=info:pmid/&rft_ieee_id=8936597&rfr_iscdi=true