The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters
The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawate...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2019-11, Vol.46 (22), p.13227-13233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13233 |
---|---|
container_issue | 22 |
container_start_page | 13227 |
container_title | Geophysical research letters |
container_volume | 46 |
creator | Brewer, Peter G. Peltzer, Edward T. |
description | The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules.
Key Points
The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding.
Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed.
The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat. |
doi_str_mv | 10.1029/2019GL085117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329727047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329727047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFKzVmw-w4NXo7CabzR611FaIilLxGCabWUxJk7qboH17I_XgydMMPx8z8DN2LuBKgDTXEoRZ5JApIfQBmwiTJFEGoA_ZBMCMu9TpMTsJYQ0AMcRiwp5X78Qfuobs0KDntxjqwF3neT_mS8Kez3CLtu53HNuKj9pvsOHzry22oe5a3jn-iP3gx_ANe_LhlB05bAKd_c4pe72br2bLKH9a3M9u8sjGmTZRCU6mMVlppE5sphCUBFSJVErKDCudOk3WZs46AyklpdJUlSVVZHWSUhpP2cX-7tZ3HwOFvlh3g2_Hl4WMpdFSQ6JHdblX1ncheHLF1tcb9LtCQPFTWvG3tJHLPf-sG9r9a4vFS65MJk38DWjJbHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329727047</pqid></control><display><type>article</type><title>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Brewer, Peter G. ; Peltzer, Edward T.</creator><creatorcontrib>Brewer, Peter G. ; Peltzer, Edward T.</creatorcontrib><description>The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules.
Key Points
The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding.
Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed.
The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL085117</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Anthropogenic factors ; Energy ; Gases ; Greenhouse effect ; Greenhouse gases ; Heat ; heat capacity ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Kinetic energy ; Molecular weight ; Natural waters ; sea water ; Seawater ; Specific heat ; specific volume ; Thermal expansion ; Weight</subject><ispartof>Geophysical research letters, 2019-11, Vol.46 (22), p.13227-13233</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</citedby><cites>FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</cites><orcidid>0000-0002-5448-0199 ; 0000-0003-2821-3553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL085117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL085117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Brewer, Peter G.</creatorcontrib><creatorcontrib>Peltzer, Edward T.</creatorcontrib><title>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</title><title>Geophysical research letters</title><description>The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules.
Key Points
The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding.
Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed.
The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.</description><subject>Anthropogenic factors</subject><subject>Energy</subject><subject>Gases</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>heat capacity</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Kinetic energy</subject><subject>Molecular weight</subject><subject>Natural waters</subject><subject>sea water</subject><subject>Seawater</subject><subject>Specific heat</subject><subject>specific volume</subject><subject>Thermal expansion</subject><subject>Weight</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90MFKw0AQBuBFFKzVmw-w4NXo7CabzR611FaIilLxGCabWUxJk7qboH17I_XgydMMPx8z8DN2LuBKgDTXEoRZ5JApIfQBmwiTJFEGoA_ZBMCMu9TpMTsJYQ0AMcRiwp5X78Qfuobs0KDntxjqwF3neT_mS8Kez3CLtu53HNuKj9pvsOHzry22oe5a3jn-iP3gx_ANe_LhlB05bAKd_c4pe72br2bLKH9a3M9u8sjGmTZRCU6mMVlppE5sphCUBFSJVErKDCudOk3WZs46AyklpdJUlSVVZHWSUhpP2cX-7tZ3HwOFvlh3g2_Hl4WMpdFSQ6JHdblX1ncheHLF1tcb9LtCQPFTWvG3tJHLPf-sG9r9a4vFS65MJk38DWjJbHw</recordid><startdate>20191128</startdate><enddate>20191128</enddate><creator>Brewer, Peter G.</creator><creator>Peltzer, Edward T.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5448-0199</orcidid><orcidid>https://orcid.org/0000-0003-2821-3553</orcidid></search><sort><creationdate>20191128</creationdate><title>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</title><author>Brewer, Peter G. ; Peltzer, Edward T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthropogenic factors</topic><topic>Energy</topic><topic>Gases</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>heat capacity</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Kinetic energy</topic><topic>Molecular weight</topic><topic>Natural waters</topic><topic>sea water</topic><topic>Seawater</topic><topic>Specific heat</topic><topic>specific volume</topic><topic>Thermal expansion</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brewer, Peter G.</creatorcontrib><creatorcontrib>Peltzer, Edward T.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brewer, Peter G.</au><au>Peltzer, Edward T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</atitle><jtitle>Geophysical research letters</jtitle><date>2019-11-28</date><risdate>2019</risdate><volume>46</volume><issue>22</issue><spage>13227</spage><epage>13233</epage><pages>13227-13233</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules.
Key Points
The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding.
Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed.
The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2019GL085117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5448-0199</orcidid><orcidid>https://orcid.org/0000-0003-2821-3553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2019-11, Vol.46 (22), p.13227-13233 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2329727047 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | Anthropogenic factors Energy Gases Greenhouse effect Greenhouse gases Heat heat capacity Hydrogen Hydrogen bonding Hydrogen bonds Kinetic energy Molecular weight Natural waters sea water Seawater Specific heat specific volume Thermal expansion Weight |
title | The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Molecular%20Basis%20for%20the%20Heat%20Capacity%20and%20Thermal%20Expansion%20of%20Natural%20Waters&rft.jtitle=Geophysical%20research%20letters&rft.au=Brewer,%20Peter%20G.&rft.date=2019-11-28&rft.volume=46&rft.issue=22&rft.spage=13227&rft.epage=13233&rft.pages=13227-13233&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL085117&rft_dat=%3Cproquest_cross%3E2329727047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329727047&rft_id=info:pmid/&rfr_iscdi=true |