The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters

The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-11, Vol.46 (22), p.13227-13233
Hauptverfasser: Brewer, Peter G., Peltzer, Edward T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13233
container_issue 22
container_start_page 13227
container_title Geophysical research letters
container_volume 46
creator Brewer, Peter G.
Peltzer, Edward T.
description The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules. Key Points The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding. Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed. The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.
doi_str_mv 10.1029/2019GL085117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329727047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329727047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFKzVmw-w4NXo7CabzR611FaIilLxGCabWUxJk7qboH17I_XgydMMPx8z8DN2LuBKgDTXEoRZ5JApIfQBmwiTJFEGoA_ZBMCMu9TpMTsJYQ0AMcRiwp5X78Qfuobs0KDntxjqwF3neT_mS8Kez3CLtu53HNuKj9pvsOHzry22oe5a3jn-iP3gx_ANe_LhlB05bAKd_c4pe72br2bLKH9a3M9u8sjGmTZRCU6mMVlppE5sphCUBFSJVErKDCudOk3WZs46AyklpdJUlSVVZHWSUhpP2cX-7tZ3HwOFvlh3g2_Hl4WMpdFSQ6JHdblX1ncheHLF1tcb9LtCQPFTWvG3tJHLPf-sG9r9a4vFS65MJk38DWjJbHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329727047</pqid></control><display><type>article</type><title>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Brewer, Peter G. ; Peltzer, Edward T.</creator><creatorcontrib>Brewer, Peter G. ; Peltzer, Edward T.</creatorcontrib><description>The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules. Key Points The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding. Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed. The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL085117</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Anthropogenic factors ; Energy ; Gases ; Greenhouse effect ; Greenhouse gases ; Heat ; heat capacity ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Kinetic energy ; Molecular weight ; Natural waters ; sea water ; Seawater ; Specific heat ; specific volume ; Thermal expansion ; Weight</subject><ispartof>Geophysical research letters, 2019-11, Vol.46 (22), p.13227-13233</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</citedby><cites>FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</cites><orcidid>0000-0002-5448-0199 ; 0000-0003-2821-3553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL085117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL085117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Brewer, Peter G.</creatorcontrib><creatorcontrib>Peltzer, Edward T.</creatorcontrib><title>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</title><title>Geophysical research letters</title><description>The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules. Key Points The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding. Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed. The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.</description><subject>Anthropogenic factors</subject><subject>Energy</subject><subject>Gases</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>heat capacity</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Kinetic energy</subject><subject>Molecular weight</subject><subject>Natural waters</subject><subject>sea water</subject><subject>Seawater</subject><subject>Specific heat</subject><subject>specific volume</subject><subject>Thermal expansion</subject><subject>Weight</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90MFKw0AQBuBFFKzVmw-w4NXo7CabzR611FaIilLxGCabWUxJk7qboH17I_XgydMMPx8z8DN2LuBKgDTXEoRZ5JApIfQBmwiTJFEGoA_ZBMCMu9TpMTsJYQ0AMcRiwp5X78Qfuobs0KDntxjqwF3neT_mS8Kez3CLtu53HNuKj9pvsOHzry22oe5a3jn-iP3gx_ANe_LhlB05bAKd_c4pe72br2bLKH9a3M9u8sjGmTZRCU6mMVlppE5sphCUBFSJVErKDCudOk3WZs46AyklpdJUlSVVZHWSUhpP2cX-7tZ3HwOFvlh3g2_Hl4WMpdFSQ6JHdblX1ncheHLF1tcb9LtCQPFTWvG3tJHLPf-sG9r9a4vFS65MJk38DWjJbHw</recordid><startdate>20191128</startdate><enddate>20191128</enddate><creator>Brewer, Peter G.</creator><creator>Peltzer, Edward T.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5448-0199</orcidid><orcidid>https://orcid.org/0000-0003-2821-3553</orcidid></search><sort><creationdate>20191128</creationdate><title>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</title><author>Brewer, Peter G. ; Peltzer, Edward T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3879-b0f263ec29274c85a0520a54255228ad76f7ecc8fcf906e4b57edbbedec746e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthropogenic factors</topic><topic>Energy</topic><topic>Gases</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>heat capacity</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Kinetic energy</topic><topic>Molecular weight</topic><topic>Natural waters</topic><topic>sea water</topic><topic>Seawater</topic><topic>Specific heat</topic><topic>specific volume</topic><topic>Thermal expansion</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brewer, Peter G.</creatorcontrib><creatorcontrib>Peltzer, Edward T.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brewer, Peter G.</au><au>Peltzer, Edward T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters</atitle><jtitle>Geophysical research letters</jtitle><date>2019-11-28</date><risdate>2019</risdate><volume>46</volume><issue>22</issue><spage>13227</spage><epage>13233</epage><pages>13227-13233</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The high heat capacity of seawater has been cited as why 93% of the heat trapped by anthropogenic greenhouse gases is absorbed by the ocean. Specific heats (CP) are closely tied to molecular weight. The mean molecular weight of pure water over the range 0–40 °C is 86.1–80.7 and 89.4–84.5 for seawater. Warming of water increases the kinetic energy of the molecules and induces breaking of hydrogen bonds (8.364 kJ/mol); both effects increase the volume of the fluid. Warming pure water from 0–10 °C increases the single H2O molecular form by 1.64%, accounting for 36.3% of the energy consumed. The specific heat of pure water is thus attributable (63.7%) to increasing the kinetic energy of the water, and (36.3%) to the energy required to break hydrogen bonds. For seawater, 34.7% of the energy goes to breaking hydrogen bonds while the rest (65.3%) is attributable to increasing the kinetic energy of the molecules. Key Points The specific heat of water and sea water is a function of the molecular structure governed by hydrogen bonding. Warming water and sea water breaks hydrogen bonds and releases single H2O molecules accounting for 36% of the heat absorbed. The molecular weight of water ranges from 86 to 81 from 0 to 40 degrees C accounting for the remaining 64% of the specific heat.</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL085117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5448-0199</orcidid><orcidid>https://orcid.org/0000-0003-2821-3553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-11, Vol.46 (22), p.13227-13233
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2329727047
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Anthropogenic factors
Energy
Gases
Greenhouse effect
Greenhouse gases
Heat
heat capacity
Hydrogen
Hydrogen bonding
Hydrogen bonds
Kinetic energy
Molecular weight
Natural waters
sea water
Seawater
Specific heat
specific volume
Thermal expansion
Weight
title The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Molecular%20Basis%20for%20the%20Heat%20Capacity%20and%20Thermal%20Expansion%20of%20Natural%20Waters&rft.jtitle=Geophysical%20research%20letters&rft.au=Brewer,%20Peter%20G.&rft.date=2019-11-28&rft.volume=46&rft.issue=22&rft.spage=13227&rft.epage=13233&rft.pages=13227-13233&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL085117&rft_dat=%3Cproquest_cross%3E2329727047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329727047&rft_id=info:pmid/&rfr_iscdi=true