A hybrid swarm intelligence based approach for abnormal event detection in crowded environments
•2D variance plane computation.•Saliency extraction with a modified ant colony optimization (ACO) algorithm.•A novel swarm advection methodology for histogram computation. In this paper, we propose a hybrid swarm intelligence based approach to tackle the problem of abnormal event detection in crowde...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2019-12, Vol.128, p.220-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | |
container_start_page | 220 |
container_title | Pattern recognition letters |
container_volume | 128 |
creator | Qasim, Tehreem Bhatti, Naeem |
description | •2D variance plane computation.•Saliency extraction with a modified ant colony optimization (ACO) algorithm.•A novel swarm advection methodology for histogram computation.
In this paper, we propose a hybrid swarm intelligence based approach to tackle the problem of abnormal event detection in crowded environments in surveillance videos. In the proposed approach, a video frame is subjected to a series of operations to extract most salient information from it. Initially, a novel discriminative 2D variance plane corresponding to (and equal in dimensions to) each video frame is constructed in which the value at each pixel location represents the variance of optical flow field magnitude in the local spatio-temporal neighborhood of that pixel. Consequently, a modified ant colony optimization (ACO) clustering algorithm is employed to partition the 2D variance plane into salient and non-salient clusters. The cluster with salient pixels represents the regions of a video frame where optical flow variations inside the local spatio-temporal neighborhood of a pixel are high and is selected for further computation. Finally, a novel predator-prey algorithm is implemented and predators are advected over the prey values in the selected cluster to compute histogram of swarms (HOS) for a particular frame. The proposed approach outperforms state of the art on two commonly used datasets in our experiments, i.e., UMN crowd anomaly dataset and UCF web dataset. |
doi_str_mv | 10.1016/j.patrec.2019.09.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329721313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865519302478</els_id><sourcerecordid>2329721313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e1b86acf4d01f3004a8b4d081673dc2479cfdc732a3b42c3ee959dc433e30e433</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaP-hC0LVdveLHphBCXxDopl0LWRo3MrblSkpC_r4y6bowMLM4d-bOReiekpwSWjx2-aSiB50zQuucpCL8Ai1oVbKs5EJcokXCyqwqVqtrdBNCRwgpeF0tkFzj3anx1uBwVH7AdozQ9_YbRg24UQEMVtPkndI73DqPVTM6P6gewwHGiA1E0NG6MQmx9u5okgDGg_VuHBIQbtFVq_oAd399ib5enj83b9n24_V9s95mmnMRM6BNVSjdCkNoywkRqmrSXCXX3Ggmylq3RpecKd4IpjlAvaqNFpwDJ5DaEj2c9yavP3sIUXZu78d0UjLO6pJRTmdKnKlkNQQPrZy8HZQ_SUrkHKXs5DlKOUcpSSoyy57OMkgfHCx4GbSdEzI2oVEaZ_9f8AtN33_y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329721313</pqid></control><display><type>article</type><title>A hybrid swarm intelligence based approach for abnormal event detection in crowded environments</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Qasim, Tehreem ; Bhatti, Naeem</creator><creatorcontrib>Qasim, Tehreem ; Bhatti, Naeem</creatorcontrib><description>•2D variance plane computation.•Saliency extraction with a modified ant colony optimization (ACO) algorithm.•A novel swarm advection methodology for histogram computation.
In this paper, we propose a hybrid swarm intelligence based approach to tackle the problem of abnormal event detection in crowded environments in surveillance videos. In the proposed approach, a video frame is subjected to a series of operations to extract most salient information from it. Initially, a novel discriminative 2D variance plane corresponding to (and equal in dimensions to) each video frame is constructed in which the value at each pixel location represents the variance of optical flow field magnitude in the local spatio-temporal neighborhood of that pixel. Consequently, a modified ant colony optimization (ACO) clustering algorithm is employed to partition the 2D variance plane into salient and non-salient clusters. The cluster with salient pixels represents the regions of a video frame where optical flow variations inside the local spatio-temporal neighborhood of a pixel are high and is selected for further computation. Finally, a novel predator-prey algorithm is implemented and predators are advected over the prey values in the selected cluster to compute histogram of swarms (HOS) for a particular frame. The proposed approach outperforms state of the art on two commonly used datasets in our experiments, i.e., UMN crowd anomaly dataset and UCF web dataset.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2019.09.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Anomaly detection ; Ant colony optimization ; Clustering ; Datasets ; Histogram of swarms ; Histograms ; Hybrid systems ; Information processing ; Intelligence ; Optical flow (image analysis) ; Pixels ; Predator-prey algorithm ; Predators ; Prey ; Swarm intelligence ; Swarms</subject><ispartof>Pattern recognition letters, 2019-12, Vol.128, p.220-225</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e1b86acf4d01f3004a8b4d081673dc2479cfdc732a3b42c3ee959dc433e30e433</citedby><cites>FETCH-LOGICAL-c334t-e1b86acf4d01f3004a8b4d081673dc2479cfdc732a3b42c3ee959dc433e30e433</cites><orcidid>0000-0002-9462-0758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2019.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qasim, Tehreem</creatorcontrib><creatorcontrib>Bhatti, Naeem</creatorcontrib><title>A hybrid swarm intelligence based approach for abnormal event detection in crowded environments</title><title>Pattern recognition letters</title><description>•2D variance plane computation.•Saliency extraction with a modified ant colony optimization (ACO) algorithm.•A novel swarm advection methodology for histogram computation.
In this paper, we propose a hybrid swarm intelligence based approach to tackle the problem of abnormal event detection in crowded environments in surveillance videos. In the proposed approach, a video frame is subjected to a series of operations to extract most salient information from it. Initially, a novel discriminative 2D variance plane corresponding to (and equal in dimensions to) each video frame is constructed in which the value at each pixel location represents the variance of optical flow field magnitude in the local spatio-temporal neighborhood of that pixel. Consequently, a modified ant colony optimization (ACO) clustering algorithm is employed to partition the 2D variance plane into salient and non-salient clusters. The cluster with salient pixels represents the regions of a video frame where optical flow variations inside the local spatio-temporal neighborhood of a pixel are high and is selected for further computation. Finally, a novel predator-prey algorithm is implemented and predators are advected over the prey values in the selected cluster to compute histogram of swarms (HOS) for a particular frame. The proposed approach outperforms state of the art on two commonly used datasets in our experiments, i.e., UMN crowd anomaly dataset and UCF web dataset.</description><subject>Algorithms</subject><subject>Anomaly detection</subject><subject>Ant colony optimization</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Histogram of swarms</subject><subject>Histograms</subject><subject>Hybrid systems</subject><subject>Information processing</subject><subject>Intelligence</subject><subject>Optical flow (image analysis)</subject><subject>Pixels</subject><subject>Predator-prey algorithm</subject><subject>Predators</subject><subject>Prey</subject><subject>Swarm intelligence</subject><subject>Swarms</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaP-hC0LVdveLHphBCXxDopl0LWRo3MrblSkpC_r4y6bowMLM4d-bOReiekpwSWjx2-aSiB50zQuucpCL8Ai1oVbKs5EJcokXCyqwqVqtrdBNCRwgpeF0tkFzj3anx1uBwVH7AdozQ9_YbRg24UQEMVtPkndI73DqPVTM6P6gewwHGiA1E0NG6MQmx9u5okgDGg_VuHBIQbtFVq_oAd399ib5enj83b9n24_V9s95mmnMRM6BNVSjdCkNoywkRqmrSXCXX3Ggmylq3RpecKd4IpjlAvaqNFpwDJ5DaEj2c9yavP3sIUXZu78d0UjLO6pJRTmdKnKlkNQQPrZy8HZQ_SUrkHKXs5DlKOUcpSSoyy57OMkgfHCx4GbSdEzI2oVEaZ_9f8AtN33_y</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Qasim, Tehreem</creator><creator>Bhatti, Naeem</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9462-0758</orcidid></search><sort><creationdate>20191201</creationdate><title>A hybrid swarm intelligence based approach for abnormal event detection in crowded environments</title><author>Qasim, Tehreem ; Bhatti, Naeem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e1b86acf4d01f3004a8b4d081673dc2479cfdc732a3b42c3ee959dc433e30e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anomaly detection</topic><topic>Ant colony optimization</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Histogram of swarms</topic><topic>Histograms</topic><topic>Hybrid systems</topic><topic>Information processing</topic><topic>Intelligence</topic><topic>Optical flow (image analysis)</topic><topic>Pixels</topic><topic>Predator-prey algorithm</topic><topic>Predators</topic><topic>Prey</topic><topic>Swarm intelligence</topic><topic>Swarms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qasim, Tehreem</creatorcontrib><creatorcontrib>Bhatti, Naeem</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qasim, Tehreem</au><au>Bhatti, Naeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid swarm intelligence based approach for abnormal event detection in crowded environments</atitle><jtitle>Pattern recognition letters</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>128</volume><spage>220</spage><epage>225</epage><pages>220-225</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•2D variance plane computation.•Saliency extraction with a modified ant colony optimization (ACO) algorithm.•A novel swarm advection methodology for histogram computation.
In this paper, we propose a hybrid swarm intelligence based approach to tackle the problem of abnormal event detection in crowded environments in surveillance videos. In the proposed approach, a video frame is subjected to a series of operations to extract most salient information from it. Initially, a novel discriminative 2D variance plane corresponding to (and equal in dimensions to) each video frame is constructed in which the value at each pixel location represents the variance of optical flow field magnitude in the local spatio-temporal neighborhood of that pixel. Consequently, a modified ant colony optimization (ACO) clustering algorithm is employed to partition the 2D variance plane into salient and non-salient clusters. The cluster with salient pixels represents the regions of a video frame where optical flow variations inside the local spatio-temporal neighborhood of a pixel are high and is selected for further computation. Finally, a novel predator-prey algorithm is implemented and predators are advected over the prey values in the selected cluster to compute histogram of swarms (HOS) for a particular frame. The proposed approach outperforms state of the art on two commonly used datasets in our experiments, i.e., UMN crowd anomaly dataset and UCF web dataset.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2019.09.003</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9462-0758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2019-12, Vol.128, p.220-225 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2329721313 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Anomaly detection Ant colony optimization Clustering Datasets Histogram of swarms Histograms Hybrid systems Information processing Intelligence Optical flow (image analysis) Pixels Predator-prey algorithm Predators Prey Swarm intelligence Swarms |
title | A hybrid swarm intelligence based approach for abnormal event detection in crowded environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20swarm%20intelligence%20based%20approach%20for%20abnormal%20event%20detection%20in%20crowded%20environments&rft.jtitle=Pattern%20recognition%20letters&rft.au=Qasim,%20Tehreem&rft.date=2019-12-01&rft.volume=128&rft.spage=220&rft.epage=225&rft.pages=220-225&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2019.09.003&rft_dat=%3Cproquest_cross%3E2329721313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329721313&rft_id=info:pmid/&rft_els_id=S0167865519302478&rfr_iscdi=true |