Dynamics of three-dimensional capture orbits from libration region analysis
Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2019-12, Vol.165, p.331-343 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | |
container_start_page | 331 |
container_title | Acta astronautica |
container_volume | 165 |
creator | Carletta, Stefano Pontani, Mauro Teofilatto, Paolo |
description | Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process.
This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined.
•The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters. |
doi_str_mv | 10.1016/j.actaastro.2019.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329719762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009457651931286X</els_id><sourcerecordid>2329719762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwQXPu06S3c3mWOpfLHjRc8gms5ql3dQkFfrtTal4FR4MzPzmMfMIuaZQUaDt7Vhpk7SOKfiKAZUVZFF5Qma0E7JkwOGUzABkXTaibc7JRYwjAAjWyRl5udtPeuNMLPxQpM-AWFq3wSk6P-l1YfQ27QIWPvQuxWIIflOsXR90yvMi4Meh6Ezuo4uX5GzQ64hXv3VO3h_u35ZP5er18Xm5WJWG1zyVLdecdVpKI9Cyzvat7HvbczHQgfa2yY2mtmwQDCRkttYtYMNamykDyPmc3Bx9t8F_7TAmNfpdyEdExTiTgkrRskyJI2WCjzHgoLbBbXTYKwrqkJwa1V9y6pCcgiwq8-biuIn5iW-HQUXjcDJoXUCTlPXuX48fw4N9JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329719762</pqid></control><display><type>article</type><title>Dynamics of three-dimensional capture orbits from libration region analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Carletta, Stefano ; Pontani, Mauro ; Teofilatto, Paolo</creator><creatorcontrib>Carletta, Stefano ; Pontani, Mauro ; Teofilatto, Paolo</creatorcontrib><description>Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process.
This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined.
•The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.09.019</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Ballistic capture ; Eccentric orbits ; Equations of motion ; Equilibrium ; Equilibrium region ; Flight time ; Inclination ; Iterative methods ; Launch dates ; Libration ; Low-energy ; Maneuvers ; Orbital elements ; Orbits ; Parameter identification ; Parametric design ; Perturbation methods ; Propellant consumption ; Space missions ; Spacecraft ; Three dimensional bodies ; Trajectory analysis</subject><ispartof>Acta astronautica, 2019-12, Vol.165, p.331-343</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</citedby><cites>FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009457651931286X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Carletta, Stefano</creatorcontrib><creatorcontrib>Pontani, Mauro</creatorcontrib><creatorcontrib>Teofilatto, Paolo</creatorcontrib><title>Dynamics of three-dimensional capture orbits from libration region analysis</title><title>Acta astronautica</title><description>Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process.
This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined.
•The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.</description><subject>Ballistic capture</subject><subject>Eccentric orbits</subject><subject>Equations of motion</subject><subject>Equilibrium</subject><subject>Equilibrium region</subject><subject>Flight time</subject><subject>Inclination</subject><subject>Iterative methods</subject><subject>Launch dates</subject><subject>Libration</subject><subject>Low-energy</subject><subject>Maneuvers</subject><subject>Orbital elements</subject><subject>Orbits</subject><subject>Parameter identification</subject><subject>Parametric design</subject><subject>Perturbation methods</subject><subject>Propellant consumption</subject><subject>Space missions</subject><subject>Spacecraft</subject><subject>Three dimensional bodies</subject><subject>Trajectory analysis</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwQXPu06S3c3mWOpfLHjRc8gms5ql3dQkFfrtTal4FR4MzPzmMfMIuaZQUaDt7Vhpk7SOKfiKAZUVZFF5Qma0E7JkwOGUzABkXTaibc7JRYwjAAjWyRl5udtPeuNMLPxQpM-AWFq3wSk6P-l1YfQ27QIWPvQuxWIIflOsXR90yvMi4Meh6Ezuo4uX5GzQ64hXv3VO3h_u35ZP5er18Xm5WJWG1zyVLdecdVpKI9Cyzvat7HvbczHQgfa2yY2mtmwQDCRkttYtYMNamykDyPmc3Bx9t8F_7TAmNfpdyEdExTiTgkrRskyJI2WCjzHgoLbBbXTYKwrqkJwa1V9y6pCcgiwq8-biuIn5iW-HQUXjcDJoXUCTlPXuX48fw4N9JA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Carletta, Stefano</creator><creator>Pontani, Mauro</creator><creator>Teofilatto, Paolo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201912</creationdate><title>Dynamics of three-dimensional capture orbits from libration region analysis</title><author>Carletta, Stefano ; Pontani, Mauro ; Teofilatto, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ballistic capture</topic><topic>Eccentric orbits</topic><topic>Equations of motion</topic><topic>Equilibrium</topic><topic>Equilibrium region</topic><topic>Flight time</topic><topic>Inclination</topic><topic>Iterative methods</topic><topic>Launch dates</topic><topic>Libration</topic><topic>Low-energy</topic><topic>Maneuvers</topic><topic>Orbital elements</topic><topic>Orbits</topic><topic>Parameter identification</topic><topic>Parametric design</topic><topic>Perturbation methods</topic><topic>Propellant consumption</topic><topic>Space missions</topic><topic>Spacecraft</topic><topic>Three dimensional bodies</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carletta, Stefano</creatorcontrib><creatorcontrib>Pontani, Mauro</creatorcontrib><creatorcontrib>Teofilatto, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carletta, Stefano</au><au>Pontani, Mauro</au><au>Teofilatto, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of three-dimensional capture orbits from libration region analysis</atitle><jtitle>Acta astronautica</jtitle><date>2019-12</date><risdate>2019</risdate><volume>165</volume><spage>331</spage><epage>343</epage><pages>331-343</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process.
This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined.
•The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.09.019</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2019-12, Vol.165, p.331-343 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2329719762 |
source | Elsevier ScienceDirect Journals |
subjects | Ballistic capture Eccentric orbits Equations of motion Equilibrium Equilibrium region Flight time Inclination Iterative methods Launch dates Libration Low-energy Maneuvers Orbital elements Orbits Parameter identification Parametric design Perturbation methods Propellant consumption Space missions Spacecraft Three dimensional bodies Trajectory analysis |
title | Dynamics of three-dimensional capture orbits from libration region analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20three-dimensional%20capture%20orbits%20from%20libration%20region%20analysis&rft.jtitle=Acta%20astronautica&rft.au=Carletta,%20Stefano&rft.date=2019-12&rft.volume=165&rft.spage=331&rft.epage=343&rft.pages=331-343&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.09.019&rft_dat=%3Cproquest_cross%3E2329719762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329719762&rft_id=info:pmid/&rft_els_id=S009457651931286X&rfr_iscdi=true |