Dynamics of three-dimensional capture orbits from libration region analysis

Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-12, Vol.165, p.331-343
Hauptverfasser: Carletta, Stefano, Pontani, Mauro, Teofilatto, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue
container_start_page 331
container_title Acta astronautica
container_volume 165
creator Carletta, Stefano
Pontani, Mauro
Teofilatto, Paolo
description Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process. This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined. •The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.
doi_str_mv 10.1016/j.actaastro.2019.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329719762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009457651931286X</els_id><sourcerecordid>2329719762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwQXPu06S3c3mWOpfLHjRc8gms5ql3dQkFfrtTal4FR4MzPzmMfMIuaZQUaDt7Vhpk7SOKfiKAZUVZFF5Qma0E7JkwOGUzABkXTaibc7JRYwjAAjWyRl5udtPeuNMLPxQpM-AWFq3wSk6P-l1YfQ27QIWPvQuxWIIflOsXR90yvMi4Meh6Ezuo4uX5GzQ64hXv3VO3h_u35ZP5er18Xm5WJWG1zyVLdecdVpKI9Cyzvat7HvbczHQgfa2yY2mtmwQDCRkttYtYMNamykDyPmc3Bx9t8F_7TAmNfpdyEdExTiTgkrRskyJI2WCjzHgoLbBbXTYKwrqkJwa1V9y6pCcgiwq8-biuIn5iW-HQUXjcDJoXUCTlPXuX48fw4N9JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329719762</pqid></control><display><type>article</type><title>Dynamics of three-dimensional capture orbits from libration region analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Carletta, Stefano ; Pontani, Mauro ; Teofilatto, Paolo</creator><creatorcontrib>Carletta, Stefano ; Pontani, Mauro ; Teofilatto, Paolo</creatorcontrib><description>Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process. This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined. •The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.09.019</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Ballistic capture ; Eccentric orbits ; Equations of motion ; Equilibrium ; Equilibrium region ; Flight time ; Inclination ; Iterative methods ; Launch dates ; Libration ; Low-energy ; Maneuvers ; Orbital elements ; Orbits ; Parameter identification ; Parametric design ; Perturbation methods ; Propellant consumption ; Space missions ; Spacecraft ; Three dimensional bodies ; Trajectory analysis</subject><ispartof>Acta astronautica, 2019-12, Vol.165, p.331-343</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</citedby><cites>FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009457651931286X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Carletta, Stefano</creatorcontrib><creatorcontrib>Pontani, Mauro</creatorcontrib><creatorcontrib>Teofilatto, Paolo</creatorcontrib><title>Dynamics of three-dimensional capture orbits from libration region analysis</title><title>Acta astronautica</title><description>Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process. This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined. •The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.</description><subject>Ballistic capture</subject><subject>Eccentric orbits</subject><subject>Equations of motion</subject><subject>Equilibrium</subject><subject>Equilibrium region</subject><subject>Flight time</subject><subject>Inclination</subject><subject>Iterative methods</subject><subject>Launch dates</subject><subject>Libration</subject><subject>Low-energy</subject><subject>Maneuvers</subject><subject>Orbital elements</subject><subject>Orbits</subject><subject>Parameter identification</subject><subject>Parametric design</subject><subject>Perturbation methods</subject><subject>Propellant consumption</subject><subject>Space missions</subject><subject>Spacecraft</subject><subject>Three dimensional bodies</subject><subject>Trajectory analysis</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwQXPu06S3c3mWOpfLHjRc8gms5ql3dQkFfrtTal4FR4MzPzmMfMIuaZQUaDt7Vhpk7SOKfiKAZUVZFF5Qma0E7JkwOGUzABkXTaibc7JRYwjAAjWyRl5udtPeuNMLPxQpM-AWFq3wSk6P-l1YfQ27QIWPvQuxWIIflOsXR90yvMi4Meh6Ezuo4uX5GzQ64hXv3VO3h_u35ZP5er18Xm5WJWG1zyVLdecdVpKI9Cyzvat7HvbczHQgfa2yY2mtmwQDCRkttYtYMNamykDyPmc3Bx9t8F_7TAmNfpdyEdExTiTgkrRskyJI2WCjzHgoLbBbXTYKwrqkJwa1V9y6pCcgiwq8-biuIn5iW-HQUXjcDJoXUCTlPXuX48fw4N9JA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Carletta, Stefano</creator><creator>Pontani, Mauro</creator><creator>Teofilatto, Paolo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201912</creationdate><title>Dynamics of three-dimensional capture orbits from libration region analysis</title><author>Carletta, Stefano ; Pontani, Mauro ; Teofilatto, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-63a328a99c7ed28db69bbdb37f1f1bd5db654d2f720903a34a60e526dbbdc0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ballistic capture</topic><topic>Eccentric orbits</topic><topic>Equations of motion</topic><topic>Equilibrium</topic><topic>Equilibrium region</topic><topic>Flight time</topic><topic>Inclination</topic><topic>Iterative methods</topic><topic>Launch dates</topic><topic>Libration</topic><topic>Low-energy</topic><topic>Maneuvers</topic><topic>Orbital elements</topic><topic>Orbits</topic><topic>Parameter identification</topic><topic>Parametric design</topic><topic>Perturbation methods</topic><topic>Propellant consumption</topic><topic>Space missions</topic><topic>Spacecraft</topic><topic>Three dimensional bodies</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carletta, Stefano</creatorcontrib><creatorcontrib>Pontani, Mauro</creatorcontrib><creatorcontrib>Teofilatto, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carletta, Stefano</au><au>Pontani, Mauro</au><au>Teofilatto, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of three-dimensional capture orbits from libration region analysis</atitle><jtitle>Acta astronautica</jtitle><date>2019-12</date><risdate>2019</risdate><volume>165</volume><spage>331</spage><epage>343</epage><pages>331-343</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Low-energy trajectories take advantage of the mutual action of multiple celestial bodies on the spacecraft, and can conclude with ballistic capture about the arrival body, thus allowing significant savings in terms of propellant consumption, if compared to more traditional transfers. Because of the chaotic nature of multibody environments, the design of low-energy trajectories with given constraints can be complex and it is often obtained after a long, iterative, and eventually computationally expensive process. This work is aimed at identifying a limited set of characteristic parameters related both to the time behavior of three-dimensional ballistic capture orbits and to some osculating orbit elements (i.e., inclination, semimajor axis, and eccentricity), relative either to the departure or to the arrival body. The analysis is performed using the linear expansion of the Hamiltonian equations of motion in the equilibrium region around the collinear libration point L1 (or L2), in the dynamical framework of the 3 dimensional circular restricted 3-body problem. A correlation among some Hamiltonian parameters in the equilibrium region and the trajectory osculating orbital elements at capture is established. This result is used to design missions with ballistic capture having required orbital parameters at the arrival planet and it provides a strategy to control the target orbital elements at capture by small thrust maneuvers at the equilibrium region. Because of the long flight time, the solar perturbation is considered in the analysis, and suitable launch dates for the ballistically captured missions are determined. •The long-term behavior of 3D trajectories in the CR3BP can be predicted.•The behavior depends on that in the proximity of collinear libration points.•Based on 6 parameters their capture time and orbital elements can be estimated.•High inclination and low altitude capture orbits correspond to higher energy level.•Low-thrust guidance strategies can be developed with feedback on the 6 parameters.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.09.019</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-12, Vol.165, p.331-343
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2329719762
source Elsevier ScienceDirect Journals
subjects Ballistic capture
Eccentric orbits
Equations of motion
Equilibrium
Equilibrium region
Flight time
Inclination
Iterative methods
Launch dates
Libration
Low-energy
Maneuvers
Orbital elements
Orbits
Parameter identification
Parametric design
Perturbation methods
Propellant consumption
Space missions
Spacecraft
Three dimensional bodies
Trajectory analysis
title Dynamics of three-dimensional capture orbits from libration region analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20three-dimensional%20capture%20orbits%20from%20libration%20region%20analysis&rft.jtitle=Acta%20astronautica&rft.au=Carletta,%20Stefano&rft.date=2019-12&rft.volume=165&rft.spage=331&rft.epage=343&rft.pages=331-343&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.09.019&rft_dat=%3Cproquest_cross%3E2329719762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329719762&rft_id=info:pmid/&rft_els_id=S009457651931286X&rfr_iscdi=true