In-orbit micro-propulsion demonstrator for PICO-satellite applications
Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2019-12, Vol.165, p.414-423 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | |
container_start_page | 414 |
container_title | Acta astronautica |
container_volume | 165 |
creator | Pallichadath, V. Turmaine, L. Melaika, A. Gelmi, S. Ramisa, M. Vilella Rijlaarsdam, D. Silva, M.A.C. Guerrieri, D.C. Uludag, M.S. Zandbergen, B. Cervone, A. |
description | Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet).
The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters.
•MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented. |
doi_str_mv | 10.1016/j.actaastro.2019.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329719357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576519312536</els_id><sourcerecordid>2329719357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4GFzynvmQ_khxLsVoo1IOeQzb7FrJsN2uSCv57IxWvwjzeZWbemyHknsGKAWseh5WxyZiYgl9xYGoFGVBdkAWTQlEOJVySBYCqaC2a-prcxDgAgOBSLch2N1EfWpeKo7PB0zn4-TRG56eiw6Ofsq1JPhR9ntfd5kCjSTiOLmFh5nl01qTMjbfkqjdjxLvfvSTv26e3zQvdH553m_We2rIqExW1YIY3gGXHJNatxAZ4K3knOqPavqlZhbyruTSNbaVCxhsLtWQ9StWgkuWSPJx9858fJ4xJD_4UpnxS85IrwVRZi8wSZ1ZOFGPAXs_BHU340gz0T2l60H-l6Z_SNGRAlZXrsxJziE-HQUfrcLLYuYA26c67fz2-AQw0eh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329719357</pqid></control><display><type>article</type><title>In-orbit micro-propulsion demonstrator for PICO-satellite applications</title><source>Elsevier ScienceDirect Journals</source><creator>Pallichadath, V. ; Turmaine, L. ; Melaika, A. ; Gelmi, S. ; Ramisa, M. Vilella ; Rijlaarsdam, D. ; Silva, M.A.C. ; Guerrieri, D.C. ; Uludag, M.S. ; Zandbergen, B. ; Cervone, A.</creator><creatorcontrib>Pallichadath, V. ; Turmaine, L. ; Melaika, A. ; Gelmi, S. ; Ramisa, M. Vilella ; Rijlaarsdam, D. ; Silva, M.A.C. ; Guerrieri, D.C. ; Uludag, M.S. ; Zandbergen, B. ; Cervone, A.</creatorcontrib><description>Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet).
The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters.
•MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.09.004</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Acceleration ; Capillarity ; cubesats ; Free molecular flow ; Functional testing ; Heating ; Low pressure ; MEMS ; Micro-propulsion ; Micro-resistojet ; Micropropulsion ; Molecular flow ; Nozzles ; Picosatellites ; PocketQube ; Propellant storage ; Propulsion systems ; Satellites ; Space applications ; Technology demonstrator ; Thrusters ; Vaporization ; Water</subject><ispartof>Acta astronautica, 2019-12, Vol.165, p.414-423</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</citedby><cites>FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2019.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pallichadath, V.</creatorcontrib><creatorcontrib>Turmaine, L.</creatorcontrib><creatorcontrib>Melaika, A.</creatorcontrib><creatorcontrib>Gelmi, S.</creatorcontrib><creatorcontrib>Ramisa, M. Vilella</creatorcontrib><creatorcontrib>Rijlaarsdam, D.</creatorcontrib><creatorcontrib>Silva, M.A.C.</creatorcontrib><creatorcontrib>Guerrieri, D.C.</creatorcontrib><creatorcontrib>Uludag, M.S.</creatorcontrib><creatorcontrib>Zandbergen, B.</creatorcontrib><creatorcontrib>Cervone, A.</creatorcontrib><title>In-orbit micro-propulsion demonstrator for PICO-satellite applications</title><title>Acta astronautica</title><description>Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet).
The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters.
•MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.</description><subject>Acceleration</subject><subject>Capillarity</subject><subject>cubesats</subject><subject>Free molecular flow</subject><subject>Functional testing</subject><subject>Heating</subject><subject>Low pressure</subject><subject>MEMS</subject><subject>Micro-propulsion</subject><subject>Micro-resistojet</subject><subject>Micropropulsion</subject><subject>Molecular flow</subject><subject>Nozzles</subject><subject>Picosatellites</subject><subject>PocketQube</subject><subject>Propellant storage</subject><subject>Propulsion systems</subject><subject>Satellites</subject><subject>Space applications</subject><subject>Technology demonstrator</subject><subject>Thrusters</subject><subject>Vaporization</subject><subject>Water</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4GFzynvmQ_khxLsVoo1IOeQzb7FrJsN2uSCv57IxWvwjzeZWbemyHknsGKAWseh5WxyZiYgl9xYGoFGVBdkAWTQlEOJVySBYCqaC2a-prcxDgAgOBSLch2N1EfWpeKo7PB0zn4-TRG56eiw6Ofsq1JPhR9ntfd5kCjSTiOLmFh5nl01qTMjbfkqjdjxLvfvSTv26e3zQvdH553m_We2rIqExW1YIY3gGXHJNatxAZ4K3knOqPavqlZhbyruTSNbaVCxhsLtWQ9StWgkuWSPJx9858fJ4xJD_4UpnxS85IrwVRZi8wSZ1ZOFGPAXs_BHU340gz0T2l60H-l6Z_SNGRAlZXrsxJziE-HQUfrcLLYuYA26c67fz2-AQw0eh0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Pallichadath, V.</creator><creator>Turmaine, L.</creator><creator>Melaika, A.</creator><creator>Gelmi, S.</creator><creator>Ramisa, M. Vilella</creator><creator>Rijlaarsdam, D.</creator><creator>Silva, M.A.C.</creator><creator>Guerrieri, D.C.</creator><creator>Uludag, M.S.</creator><creator>Zandbergen, B.</creator><creator>Cervone, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201912</creationdate><title>In-orbit micro-propulsion demonstrator for PICO-satellite applications</title><author>Pallichadath, V. ; Turmaine, L. ; Melaika, A. ; Gelmi, S. ; Ramisa, M. Vilella ; Rijlaarsdam, D. ; Silva, M.A.C. ; Guerrieri, D.C. ; Uludag, M.S. ; Zandbergen, B. ; Cervone, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Capillarity</topic><topic>cubesats</topic><topic>Free molecular flow</topic><topic>Functional testing</topic><topic>Heating</topic><topic>Low pressure</topic><topic>MEMS</topic><topic>Micro-propulsion</topic><topic>Micro-resistojet</topic><topic>Micropropulsion</topic><topic>Molecular flow</topic><topic>Nozzles</topic><topic>Picosatellites</topic><topic>PocketQube</topic><topic>Propellant storage</topic><topic>Propulsion systems</topic><topic>Satellites</topic><topic>Space applications</topic><topic>Technology demonstrator</topic><topic>Thrusters</topic><topic>Vaporization</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallichadath, V.</creatorcontrib><creatorcontrib>Turmaine, L.</creatorcontrib><creatorcontrib>Melaika, A.</creatorcontrib><creatorcontrib>Gelmi, S.</creatorcontrib><creatorcontrib>Ramisa, M. Vilella</creatorcontrib><creatorcontrib>Rijlaarsdam, D.</creatorcontrib><creatorcontrib>Silva, M.A.C.</creatorcontrib><creatorcontrib>Guerrieri, D.C.</creatorcontrib><creatorcontrib>Uludag, M.S.</creatorcontrib><creatorcontrib>Zandbergen, B.</creatorcontrib><creatorcontrib>Cervone, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallichadath, V.</au><au>Turmaine, L.</au><au>Melaika, A.</au><au>Gelmi, S.</au><au>Ramisa, M. Vilella</au><au>Rijlaarsdam, D.</au><au>Silva, M.A.C.</au><au>Guerrieri, D.C.</au><au>Uludag, M.S.</au><au>Zandbergen, B.</au><au>Cervone, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-orbit micro-propulsion demonstrator for PICO-satellite applications</atitle><jtitle>Acta astronautica</jtitle><date>2019-12</date><risdate>2019</risdate><volume>165</volume><spage>414</spage><epage>423</epage><pages>414-423</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet).
The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters.
•MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.09.004</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2019-12, Vol.165, p.414-423 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2329719357 |
source | Elsevier ScienceDirect Journals |
subjects | Acceleration Capillarity cubesats Free molecular flow Functional testing Heating Low pressure MEMS Micro-propulsion Micro-resistojet Micropropulsion Molecular flow Nozzles Picosatellites PocketQube Propellant storage Propulsion systems Satellites Space applications Technology demonstrator Thrusters Vaporization Water |
title | In-orbit micro-propulsion demonstrator for PICO-satellite applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-orbit%20micro-propulsion%20demonstrator%20for%20PICO-satellite%20applications&rft.jtitle=Acta%20astronautica&rft.au=Pallichadath,%20V.&rft.date=2019-12&rft.volume=165&rft.spage=414&rft.epage=423&rft.pages=414-423&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.09.004&rft_dat=%3Cproquest_cross%3E2329719357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329719357&rft_id=info:pmid/&rft_els_id=S0094576519312536&rfr_iscdi=true |