In-orbit micro-propulsion demonstrator for PICO-satellite applications

Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-12, Vol.165, p.414-423
Hauptverfasser: Pallichadath, V., Turmaine, L., Melaika, A., Gelmi, S., Ramisa, M. Vilella, Rijlaarsdam, D., Silva, M.A.C., Guerrieri, D.C., Uludag, M.S., Zandbergen, B., Cervone, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue
container_start_page 414
container_title Acta astronautica
container_volume 165
creator Pallichadath, V.
Turmaine, L.
Melaika, A.
Gelmi, S.
Ramisa, M. Vilella
Rijlaarsdam, D.
Silva, M.A.C.
Guerrieri, D.C.
Uludag, M.S.
Zandbergen, B.
Cervone, A.
description Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet). The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters. •MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.
doi_str_mv 10.1016/j.actaastro.2019.09.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329719357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576519312536</els_id><sourcerecordid>2329719357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrf4GFzynvmQ_khxLsVoo1IOeQzb7FrJsN2uSCv57IxWvwjzeZWbemyHknsGKAWseh5WxyZiYgl9xYGoFGVBdkAWTQlEOJVySBYCqaC2a-prcxDgAgOBSLch2N1EfWpeKo7PB0zn4-TRG56eiw6Ofsq1JPhR9ntfd5kCjSTiOLmFh5nl01qTMjbfkqjdjxLvfvSTv26e3zQvdH553m_We2rIqExW1YIY3gGXHJNatxAZ4K3knOqPavqlZhbyruTSNbaVCxhsLtWQ9StWgkuWSPJx9858fJ4xJD_4UpnxS85IrwVRZi8wSZ1ZOFGPAXs_BHU340gz0T2l60H-l6Z_SNGRAlZXrsxJziE-HQUfrcLLYuYA26c67fz2-AQw0eh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329719357</pqid></control><display><type>article</type><title>In-orbit micro-propulsion demonstrator for PICO-satellite applications</title><source>Elsevier ScienceDirect Journals</source><creator>Pallichadath, V. ; Turmaine, L. ; Melaika, A. ; Gelmi, S. ; Ramisa, M. Vilella ; Rijlaarsdam, D. ; Silva, M.A.C. ; Guerrieri, D.C. ; Uludag, M.S. ; Zandbergen, B. ; Cervone, A.</creator><creatorcontrib>Pallichadath, V. ; Turmaine, L. ; Melaika, A. ; Gelmi, S. ; Ramisa, M. Vilella ; Rijlaarsdam, D. ; Silva, M.A.C. ; Guerrieri, D.C. ; Uludag, M.S. ; Zandbergen, B. ; Cervone, A.</creatorcontrib><description>Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet). The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters. •MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.09.004</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Acceleration ; Capillarity ; cubesats ; Free molecular flow ; Functional testing ; Heating ; Low pressure ; MEMS ; Micro-propulsion ; Micro-resistojet ; Micropropulsion ; Molecular flow ; Nozzles ; Picosatellites ; PocketQube ; Propellant storage ; Propulsion systems ; Satellites ; Space applications ; Technology demonstrator ; Thrusters ; Vaporization ; Water</subject><ispartof>Acta astronautica, 2019-12, Vol.165, p.414-423</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</citedby><cites>FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2019.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pallichadath, V.</creatorcontrib><creatorcontrib>Turmaine, L.</creatorcontrib><creatorcontrib>Melaika, A.</creatorcontrib><creatorcontrib>Gelmi, S.</creatorcontrib><creatorcontrib>Ramisa, M. Vilella</creatorcontrib><creatorcontrib>Rijlaarsdam, D.</creatorcontrib><creatorcontrib>Silva, M.A.C.</creatorcontrib><creatorcontrib>Guerrieri, D.C.</creatorcontrib><creatorcontrib>Uludag, M.S.</creatorcontrib><creatorcontrib>Zandbergen, B.</creatorcontrib><creatorcontrib>Cervone, A.</creatorcontrib><title>In-orbit micro-propulsion demonstrator for PICO-satellite applications</title><title>Acta astronautica</title><description>Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet). The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters. •MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.</description><subject>Acceleration</subject><subject>Capillarity</subject><subject>cubesats</subject><subject>Free molecular flow</subject><subject>Functional testing</subject><subject>Heating</subject><subject>Low pressure</subject><subject>MEMS</subject><subject>Micro-propulsion</subject><subject>Micro-resistojet</subject><subject>Micropropulsion</subject><subject>Molecular flow</subject><subject>Nozzles</subject><subject>Picosatellites</subject><subject>PocketQube</subject><subject>Propellant storage</subject><subject>Propulsion systems</subject><subject>Satellites</subject><subject>Space applications</subject><subject>Technology demonstrator</subject><subject>Thrusters</subject><subject>Vaporization</subject><subject>Water</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrf4GFzynvmQ_khxLsVoo1IOeQzb7FrJsN2uSCv57IxWvwjzeZWbemyHknsGKAWseh5WxyZiYgl9xYGoFGVBdkAWTQlEOJVySBYCqaC2a-prcxDgAgOBSLch2N1EfWpeKo7PB0zn4-TRG56eiw6Ofsq1JPhR9ntfd5kCjSTiOLmFh5nl01qTMjbfkqjdjxLvfvSTv26e3zQvdH553m_We2rIqExW1YIY3gGXHJNatxAZ4K3knOqPavqlZhbyruTSNbaVCxhsLtWQ9StWgkuWSPJx9858fJ4xJD_4UpnxS85IrwVRZi8wSZ1ZOFGPAXs_BHU340gz0T2l60H-l6Z_SNGRAlZXrsxJziE-HQUfrcLLYuYA26c67fz2-AQw0eh0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Pallichadath, V.</creator><creator>Turmaine, L.</creator><creator>Melaika, A.</creator><creator>Gelmi, S.</creator><creator>Ramisa, M. Vilella</creator><creator>Rijlaarsdam, D.</creator><creator>Silva, M.A.C.</creator><creator>Guerrieri, D.C.</creator><creator>Uludag, M.S.</creator><creator>Zandbergen, B.</creator><creator>Cervone, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201912</creationdate><title>In-orbit micro-propulsion demonstrator for PICO-satellite applications</title><author>Pallichadath, V. ; Turmaine, L. ; Melaika, A. ; Gelmi, S. ; Ramisa, M. Vilella ; Rijlaarsdam, D. ; Silva, M.A.C. ; Guerrieri, D.C. ; Uludag, M.S. ; Zandbergen, B. ; Cervone, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-7571a260e3d18e5b8e602b82d7da9bf6514e2d528a6cb89e126c0581fe896e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Capillarity</topic><topic>cubesats</topic><topic>Free molecular flow</topic><topic>Functional testing</topic><topic>Heating</topic><topic>Low pressure</topic><topic>MEMS</topic><topic>Micro-propulsion</topic><topic>Micro-resistojet</topic><topic>Micropropulsion</topic><topic>Molecular flow</topic><topic>Nozzles</topic><topic>Picosatellites</topic><topic>PocketQube</topic><topic>Propellant storage</topic><topic>Propulsion systems</topic><topic>Satellites</topic><topic>Space applications</topic><topic>Technology demonstrator</topic><topic>Thrusters</topic><topic>Vaporization</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallichadath, V.</creatorcontrib><creatorcontrib>Turmaine, L.</creatorcontrib><creatorcontrib>Melaika, A.</creatorcontrib><creatorcontrib>Gelmi, S.</creatorcontrib><creatorcontrib>Ramisa, M. Vilella</creatorcontrib><creatorcontrib>Rijlaarsdam, D.</creatorcontrib><creatorcontrib>Silva, M.A.C.</creatorcontrib><creatorcontrib>Guerrieri, D.C.</creatorcontrib><creatorcontrib>Uludag, M.S.</creatorcontrib><creatorcontrib>Zandbergen, B.</creatorcontrib><creatorcontrib>Cervone, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallichadath, V.</au><au>Turmaine, L.</au><au>Melaika, A.</au><au>Gelmi, S.</au><au>Ramisa, M. Vilella</au><au>Rijlaarsdam, D.</au><au>Silva, M.A.C.</au><au>Guerrieri, D.C.</au><au>Uludag, M.S.</au><au>Zandbergen, B.</au><au>Cervone, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-orbit micro-propulsion demonstrator for PICO-satellite applications</atitle><jtitle>Acta astronautica</jtitle><date>2019-12</date><risdate>2019</risdate><volume>165</volume><spage>414</spage><epage>423</epage><pages>414-423</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet). The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters. •MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.09.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-12, Vol.165, p.414-423
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2329719357
source Elsevier ScienceDirect Journals
subjects Acceleration
Capillarity
cubesats
Free molecular flow
Functional testing
Heating
Low pressure
MEMS
Micro-propulsion
Micro-resistojet
Micropropulsion
Molecular flow
Nozzles
Picosatellites
PocketQube
Propellant storage
Propulsion systems
Satellites
Space applications
Technology demonstrator
Thrusters
Vaporization
Water
title In-orbit micro-propulsion demonstrator for PICO-satellite applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-orbit%20micro-propulsion%20demonstrator%20for%20PICO-satellite%20applications&rft.jtitle=Acta%20astronautica&rft.au=Pallichadath,%20V.&rft.date=2019-12&rft.volume=165&rft.spage=414&rft.epage=423&rft.pages=414-423&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.09.004&rft_dat=%3Cproquest_cross%3E2329719357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329719357&rft_id=info:pmid/&rft_els_id=S0094576519312536&rfr_iscdi=true