In-orbit micro-propulsion demonstrator for PICO-satellite applications

Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-12, Vol.165, p.414-423
Hauptverfasser: Pallichadath, V., Turmaine, L., Melaika, A., Gelmi, S., Ramisa, M. Vilella, Rijlaarsdam, D., Silva, M.A.C., Guerrieri, D.C., Uludag, M.S., Zandbergen, B., Cervone, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Delft University of Technology is currently developing the pico-satellite platform Delfi-PQ, based on the PocketQube standard, in pursuit of a new generation of satellites with lower cost, flexibility and short development time. A technology demonstration payload expected to fly in one of the first Delfi-PQ satellites is a dual thruster micro-propulsion system based on the use of water as propellant. Two different micro-resistojet concepts will be demonstrated in the same satellite flight: one based on vaporization, heating and expansion in a nozzle of pressurized liquid water (Vaporizing Liquid Micro-resistojet); the other based on heating and acceleration in slots with simple geometry of molecules of vapour under transitional or free molecular flow regime (Low Pressure Micro-resistojet). The demonstrator is based on a common propellant storage for the two micro-propulsion concepts, based on the use of the capillarity properties of water in a small diameter tube connected to the two separate MEMS thruster chips with their own dedicated valves. This paper describes the requirements and design of the complete micro-propulsion demonstrator as well as its expected operational envelope for in-orbit functional testing, based on the currently validated performance characteristics of the two thrusters. •MEMS micro-propulsion is a promising way to enhance pico-satellites capabilities.•Two Micro-resistojet propulsion methods are presented.•Dual thruster demonstrator based on the use of water as propellant.•Design and in-orbit demonstration including firing modes and phases are presented.
ISSN:0094-5765
1879-2030
DOI:10.1016/j.actaastro.2019.09.004