Chirality in the plane

It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2020-01, Vol.134, p.103753, Article 103753
Hauptverfasser: Böhmer, Christian G., Lee, Yongjo, Neff, Patrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103753
container_title Journal of the mechanics and physics of solids
container_volume 134
creator Böhmer, Christian G.
Lee, Yongjo
Neff, Patrizio
description It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties.
doi_str_mv 10.1016/j.jmps.2019.103753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329282872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509619305174</els_id><sourcerecordid>2329282872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-5dc1836bc4e5dc6462ff98422fc6d34b31c8179ccbdc93f7abd6868b50e77bb43</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFevHjwVPLcmkzQf4EWKX7DgRc-hSRM2pdvWpCvsv7dLPXuaYXifmXkQuiO4JJjwh67s9lMqARO1DKio6BnKiBS0YELCOcowBigqrPglukqpwxhXWJAM3da7EJs-zMc8DPm8c_nUN4O7Rhe-6ZO7-asb9PXy_Fm_FduP1_f6aVtYCnIuqtYSSbmxzC0tZxy8V5IBeMtbygwlVhKhrDWtVdSLxrRccmkq7IQwhtENul_3TnH8Prg06248xGE5qYGCAglSwJKCNWXjmFJ0Xk8x7Jt41ATrk7_u9Mlfn_z16r9Ajyvklv9_gos62eAG69oQnZ11O4b_8F_VrGGz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329282872</pqid></control><display><type>article</type><title>Chirality in the plane</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Böhmer, Christian G. ; Lee, Yongjo ; Neff, Patrizio</creator><creatorcontrib>Böhmer, Christian G. ; Lee, Yongjo ; Neff, Patrizio</creatorcontrib><description>It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2019.103753</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Centro-symmetry ; Chiral materials ; Chirality ; Cosserat continuum ; Equations of motion ; Hemitropy ; Isotropy ; Planar models ; Solitary waves ; Three dimensional models ; Two dimensional models</subject><ispartof>Journal of the mechanics and physics of solids, 2020-01, Vol.134, p.103753, Article 103753</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-5dc1836bc4e5dc6462ff98422fc6d34b31c8179ccbdc93f7abd6868b50e77bb43</citedby><cites>FETCH-LOGICAL-c328t-5dc1836bc4e5dc6462ff98422fc6d34b31c8179ccbdc93f7abd6868b50e77bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2019.103753$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Böhmer, Christian G.</creatorcontrib><creatorcontrib>Lee, Yongjo</creatorcontrib><creatorcontrib>Neff, Patrizio</creatorcontrib><title>Chirality in the plane</title><title>Journal of the mechanics and physics of solids</title><description>It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties.</description><subject>Centro-symmetry</subject><subject>Chiral materials</subject><subject>Chirality</subject><subject>Cosserat continuum</subject><subject>Equations of motion</subject><subject>Hemitropy</subject><subject>Isotropy</subject><subject>Planar models</subject><subject>Solitary waves</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFevHjwVPLcmkzQf4EWKX7DgRc-hSRM2pdvWpCvsv7dLPXuaYXifmXkQuiO4JJjwh67s9lMqARO1DKio6BnKiBS0YELCOcowBigqrPglukqpwxhXWJAM3da7EJs-zMc8DPm8c_nUN4O7Rhe-6ZO7-asb9PXy_Fm_FduP1_f6aVtYCnIuqtYSSbmxzC0tZxy8V5IBeMtbygwlVhKhrDWtVdSLxrRccmkq7IQwhtENul_3TnH8Prg06248xGE5qYGCAglSwJKCNWXjmFJ0Xk8x7Jt41ATrk7_u9Mlfn_z16r9Ajyvklv9_gos62eAG69oQnZ11O4b_8F_VrGGz</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Böhmer, Christian G.</creator><creator>Lee, Yongjo</creator><creator>Neff, Patrizio</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202001</creationdate><title>Chirality in the plane</title><author>Böhmer, Christian G. ; Lee, Yongjo ; Neff, Patrizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-5dc1836bc4e5dc6462ff98422fc6d34b31c8179ccbdc93f7abd6868b50e77bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Centro-symmetry</topic><topic>Chiral materials</topic><topic>Chirality</topic><topic>Cosserat continuum</topic><topic>Equations of motion</topic><topic>Hemitropy</topic><topic>Isotropy</topic><topic>Planar models</topic><topic>Solitary waves</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhmer, Christian G.</creatorcontrib><creatorcontrib>Lee, Yongjo</creatorcontrib><creatorcontrib>Neff, Patrizio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhmer, Christian G.</au><au>Lee, Yongjo</au><au>Neff, Patrizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chirality in the plane</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-01</date><risdate>2020</risdate><volume>134</volume><spage>103753</spage><pages>103753-</pages><artnum>103753</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2019.103753</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2020-01, Vol.134, p.103753, Article 103753
issn 0022-5096
1873-4782
language eng
recordid cdi_proquest_journals_2329282872
source ScienceDirect Journals (5 years ago - present)
subjects Centro-symmetry
Chiral materials
Chirality
Cosserat continuum
Equations of motion
Hemitropy
Isotropy
Planar models
Solitary waves
Three dimensional models
Two dimensional models
title Chirality in the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chirality%20in%20the%20plane&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=B%C3%B6hmer,%20Christian%20G.&rft.date=2020-01&rft.volume=134&rft.spage=103753&rft.pages=103753-&rft.artnum=103753&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2019.103753&rft_dat=%3Cproquest_cross%3E2329282872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329282872&rft_id=info:pmid/&rft_els_id=S0022509619305174&rfr_iscdi=true