Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz

The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020, Vol.49 (1), p.681-688
Hauptverfasser: Güneşer, M. Tahir, Atasoy, Ferhat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 688
container_issue 1
container_start_page 681
container_title Journal of electronic materials
container_volume 49
creator Güneşer, M. Tahir
Atasoy, Ferhat
description The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain S -parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.
doi_str_mv 10.1007/s11664-019-07716-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329108497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329108497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e072db48280f1ca3e81bdd7b4cf5f00273aadf14f590b8659c83680463f294903</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfS9ZD4ySynVChWLVnAXMtOkRjozNcmo9dc7OoI7Vxce954Hh5BThHMEyC8CYpYlDLBgkOeYMbFHRpgmgqHMnvbJCESGLOUiPSRHIbwAYIoSR-R9-hG9rqJr1nTS1tuN-aAL42sXo3tzcUdbS291NN7pTaDljl7rLgSnG7rwbWVCoPdm7ft0bUMfwzcmPhu69LoJtRvOC-11bXoG1ZE-dCVbzj6PyYHtiebkN8fk8Wq6nMzY_O76ZnI5ZxXPITIDOV-VieQSLFZaGInlapWXSWVTC8BzofXKYmLTAkqZpUUlRSYhyYTlRVKAGJOzgbv17WtnQlQvbeeb_qXighcIMinyvsWHVuXbELyxautdrf1OIahvwWoQrHrB6kewEv1IDKPQl5u18X_of1ZfLgV_cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329108497</pqid></control><display><type>article</type><title>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</title><source>SpringerLink (Online service)</source><creator>Güneşer, M. Tahir ; Atasoy, Ferhat</creator><creatorcontrib>Güneşer, M. Tahir ; Atasoy, Ferhat</creatorcontrib><description>The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain S -parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07716-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex permittivity ; Destructive testing ; Dielectric properties ; Electromagnetic radiation ; Electronics and Microelectronics ; Gaussian process ; Instrumentation ; Material properties ; Materials Science ; Measurement methods ; Methods ; Network analysers ; Nondestructive testing ; Optical and Electronic Materials ; Permittivity ; Regression analysis ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2020, Vol.49 (1), p.681-688</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e072db48280f1ca3e81bdd7b4cf5f00273aadf14f590b8659c83680463f294903</cites><orcidid>0000-0003-3502-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07716-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07716-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Güneşer, M. Tahir</creatorcontrib><creatorcontrib>Atasoy, Ferhat</creatorcontrib><title>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain S -parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.</description><subject>Artificial intelligence</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex permittivity</subject><subject>Destructive testing</subject><subject>Dielectric properties</subject><subject>Electromagnetic radiation</subject><subject>Electronics and Microelectronics</subject><subject>Gaussian process</subject><subject>Instrumentation</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Network analysers</subject><subject>Nondestructive testing</subject><subject>Optical and Electronic Materials</subject><subject>Permittivity</subject><subject>Regression analysis</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfS9ZD4ySynVChWLVnAXMtOkRjozNcmo9dc7OoI7Vxce954Hh5BThHMEyC8CYpYlDLBgkOeYMbFHRpgmgqHMnvbJCESGLOUiPSRHIbwAYIoSR-R9-hG9rqJr1nTS1tuN-aAL42sXo3tzcUdbS291NN7pTaDljl7rLgSnG7rwbWVCoPdm7ft0bUMfwzcmPhu69LoJtRvOC-11bXoG1ZE-dCVbzj6PyYHtiebkN8fk8Wq6nMzY_O76ZnI5ZxXPITIDOV-VieQSLFZaGInlapWXSWVTC8BzofXKYmLTAkqZpUUlRSYhyYTlRVKAGJOzgbv17WtnQlQvbeeb_qXighcIMinyvsWHVuXbELyxautdrf1OIahvwWoQrHrB6kewEv1IDKPQl5u18X_of1ZfLgV_cw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Güneşer, M. Tahir</creator><creator>Atasoy, Ferhat</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid></search><sort><creationdate>2020</creationdate><title>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</title><author>Güneşer, M. Tahir ; Atasoy, Ferhat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e072db48280f1ca3e81bdd7b4cf5f00273aadf14f590b8659c83680463f294903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex permittivity</topic><topic>Destructive testing</topic><topic>Dielectric properties</topic><topic>Electromagnetic radiation</topic><topic>Electronics and Microelectronics</topic><topic>Gaussian process</topic><topic>Instrumentation</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Network analysers</topic><topic>Nondestructive testing</topic><topic>Optical and Electronic Materials</topic><topic>Permittivity</topic><topic>Regression analysis</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güneşer, M. Tahir</creatorcontrib><creatorcontrib>Atasoy, Ferhat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güneşer, M. Tahir</au><au>Atasoy, Ferhat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>681</spage><epage>688</epage><pages>681-688</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain S -parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07716-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020, Vol.49 (1), p.681-688
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2329108497
source SpringerLink (Online service)
subjects Artificial intelligence
Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex permittivity
Destructive testing
Dielectric properties
Electromagnetic radiation
Electronics and Microelectronics
Gaussian process
Instrumentation
Material properties
Materials Science
Measurement methods
Methods
Network analysers
Nondestructive testing
Optical and Electronic Materials
Permittivity
Regression analysis
Solid State Physics
title Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Complex%20Permittivity%20of%20Materials%20by%20Gaussian%20Process%20Regression%20Using%20the%20Transmission%20Parameter%20at%20Sub-THz&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=G%C3%BCne%C5%9Fer,%20M.%20Tahir&rft.date=2020&rft.volume=49&rft.issue=1&rft.spage=681&rft.epage=688&rft.pages=681-688&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07716-3&rft_dat=%3Cproquest_cross%3E2329108497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329108497&rft_id=info:pmid/&rfr_iscdi=true