Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz
The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength i...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2020, Vol.49 (1), p.681-688 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 688 |
---|---|
container_issue | 1 |
container_start_page | 681 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Güneşer, M. Tahir Atasoy, Ferhat |
description | The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain
S
-parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method. |
doi_str_mv | 10.1007/s11664-019-07716-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329108497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329108497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e072db48280f1ca3e81bdd7b4cf5f00273aadf14f590b8659c83680463f294903</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfS9ZD4ySynVChWLVnAXMtOkRjozNcmo9dc7OoI7Vxce954Hh5BThHMEyC8CYpYlDLBgkOeYMbFHRpgmgqHMnvbJCESGLOUiPSRHIbwAYIoSR-R9-hG9rqJr1nTS1tuN-aAL42sXo3tzcUdbS291NN7pTaDljl7rLgSnG7rwbWVCoPdm7ft0bUMfwzcmPhu69LoJtRvOC-11bXoG1ZE-dCVbzj6PyYHtiebkN8fk8Wq6nMzY_O76ZnI5ZxXPITIDOV-VieQSLFZaGInlapWXSWVTC8BzofXKYmLTAkqZpUUlRSYhyYTlRVKAGJOzgbv17WtnQlQvbeeb_qXighcIMinyvsWHVuXbELyxautdrf1OIahvwWoQrHrB6kewEv1IDKPQl5u18X_of1ZfLgV_cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329108497</pqid></control><display><type>article</type><title>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</title><source>SpringerLink (Online service)</source><creator>Güneşer, M. Tahir ; Atasoy, Ferhat</creator><creatorcontrib>Güneşer, M. Tahir ; Atasoy, Ferhat</creatorcontrib><description>The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain
S
-parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07716-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex permittivity ; Destructive testing ; Dielectric properties ; Electromagnetic radiation ; Electronics and Microelectronics ; Gaussian process ; Instrumentation ; Material properties ; Materials Science ; Measurement methods ; Methods ; Network analysers ; Nondestructive testing ; Optical and Electronic Materials ; Permittivity ; Regression analysis ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2020, Vol.49 (1), p.681-688</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e072db48280f1ca3e81bdd7b4cf5f00273aadf14f590b8659c83680463f294903</cites><orcidid>0000-0003-3502-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07716-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07716-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Güneşer, M. Tahir</creatorcontrib><creatorcontrib>Atasoy, Ferhat</creatorcontrib><title>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain
S
-parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.</description><subject>Artificial intelligence</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex permittivity</subject><subject>Destructive testing</subject><subject>Dielectric properties</subject><subject>Electromagnetic radiation</subject><subject>Electronics and Microelectronics</subject><subject>Gaussian process</subject><subject>Instrumentation</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Network analysers</subject><subject>Nondestructive testing</subject><subject>Optical and Electronic Materials</subject><subject>Permittivity</subject><subject>Regression analysis</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfS9ZD4ySynVChWLVnAXMtOkRjozNcmo9dc7OoI7Vxce954Hh5BThHMEyC8CYpYlDLBgkOeYMbFHRpgmgqHMnvbJCESGLOUiPSRHIbwAYIoSR-R9-hG9rqJr1nTS1tuN-aAL42sXo3tzcUdbS291NN7pTaDljl7rLgSnG7rwbWVCoPdm7ft0bUMfwzcmPhu69LoJtRvOC-11bXoG1ZE-dCVbzj6PyYHtiebkN8fk8Wq6nMzY_O76ZnI5ZxXPITIDOV-VieQSLFZaGInlapWXSWVTC8BzofXKYmLTAkqZpUUlRSYhyYTlRVKAGJOzgbv17WtnQlQvbeeb_qXighcIMinyvsWHVuXbELyxautdrf1OIahvwWoQrHrB6kewEv1IDKPQl5u18X_of1ZfLgV_cw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Güneşer, M. Tahir</creator><creator>Atasoy, Ferhat</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid></search><sort><creationdate>2020</creationdate><title>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</title><author>Güneşer, M. Tahir ; Atasoy, Ferhat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e072db48280f1ca3e81bdd7b4cf5f00273aadf14f590b8659c83680463f294903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex permittivity</topic><topic>Destructive testing</topic><topic>Dielectric properties</topic><topic>Electromagnetic radiation</topic><topic>Electronics and Microelectronics</topic><topic>Gaussian process</topic><topic>Instrumentation</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Network analysers</topic><topic>Nondestructive testing</topic><topic>Optical and Electronic Materials</topic><topic>Permittivity</topic><topic>Regression analysis</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güneşer, M. Tahir</creatorcontrib><creatorcontrib>Atasoy, Ferhat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güneşer, M. Tahir</au><au>Atasoy, Ferhat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>681</spage><epage>688</epage><pages>681-688</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The interaction between electromagnetic waves and materials is related to dielectric properties of materials, which have been used for technological applications in many fields, like polymers. Extracting complex permittivity values can be used to define the materials by using a specific wavelength in the fields of communication, optics or high-frequency electronics. This paper summarizes obtaining complex permittivity of materials by using free space measurement methods. A non-destructive/non-contactless measurement method was used to obtain
S
-parameters using a vector network analyzer. The Gaussian process regression (GPR) method, which is an artificial intelligence (AI) tool, is proposed as an alternative to numerical and analytical calculation methods to obtain complex permittivity value, and the results were confirmed by the Newton–Raphson method. GPR results were obtained to be more accurate than that of well-known methods and other alternative AI methods. In previous studies, complex permittivity has been extracted by using imaginary and real parts of the data together. Instead, with GPR, either the real and imaginative part of the S21 parameters can be used together or the real and imaginary parts of the complex permittivity can be estimated separately, depending on the input values of the proposed estimation method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07716-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020, Vol.49 (1), p.681-688 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2329108497 |
source | SpringerLink (Online service) |
subjects | Artificial intelligence Characterization and Evaluation of Materials Chemistry and Materials Science Complex permittivity Destructive testing Dielectric properties Electromagnetic radiation Electronics and Microelectronics Gaussian process Instrumentation Material properties Materials Science Measurement methods Methods Network analysers Nondestructive testing Optical and Electronic Materials Permittivity Regression analysis Solid State Physics |
title | Extracting Complex Permittivity of Materials by Gaussian Process Regression Using the Transmission Parameter at Sub-THz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Complex%20Permittivity%20of%20Materials%20by%20Gaussian%20Process%20Regression%20Using%20the%20Transmission%20Parameter%20at%20Sub-THz&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=G%C3%BCne%C5%9Fer,%20M.%20Tahir&rft.date=2020&rft.volume=49&rft.issue=1&rft.spage=681&rft.epage=688&rft.pages=681-688&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07716-3&rft_dat=%3Cproquest_cross%3E2329108497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329108497&rft_id=info:pmid/&rfr_iscdi=true |