Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading

This study deals with the mechanical behavior of the austenitic stainless steel, AISI 304, under quasi-static and impact loadings. In particular, the evolution of the transformation-induced plasticity (TRIP) is investigated. Several compression tests have been performed at various strain rates under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020, Vol.51 (1), p.252-262
Hauptverfasser: Zerouki, M., Ouali, M. Ould, Benabou, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 1
container_start_page 252
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 51
creator Zerouki, M.
Ouali, M. Ould
Benabou, L.
description This study deals with the mechanical behavior of the austenitic stainless steel, AISI 304, under quasi-static and impact loadings. In particular, the evolution of the transformation-induced plasticity (TRIP) is investigated. Several compression tests have been performed at various strain rates under both static and impact conditions (crash tests). In order to show the influence of the strain rate on the phase transformation, the microstructures of as-received and deformed specimens have been observed with a scanning electron microscope. Then, the newly formed ferromagnetic martensitic phase is analyzed with the help of the vibrating sample magnetic (VSM) method and by X-ray diffraction (XRD). The results obtained from the mechanical testing indicate that the TRIP effect is actually occurring since a significant change of the curve slope is visible during the hardening regime in the stress–strain curve. The VSM and XRD techniques, on the other hand, show that the proportion of the martensitic phase is reduced when the strain rate is increased. The quantity of martensite formed is greater when quasi-static loadings are applied to the material.
doi_str_mv 10.1007/s11661-019-05527-z
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2329105398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329105398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f903bb925fed8eee7c9293c7aa0b9705ee0e7d1aca2409072ce07f5f527b488b3</originalsourceid><addsrcrecordid>eNqNkEFP2zAUgKOJSStlf2AnSzuijGc7juPjqIAhdWPS4Gw5znNJldrFTpnWX49pJrghTn6H77P9vqL4QuEbBZBnidK6piVQVYIQTJb7D8WMioqXVFVwlGeQvBQ145-K45TWABnl9az49RNHMwy7uOqtGcjve5OQ3EbjkwtxY8Y-eGJ8R87x3jz2IZLgyJ8RcUjkzncYyfVma-xIlsF0vV-dFB-dGRJ-_n_Oi7vLi9vFj3J5c3W9-L4sLa_5WDoFvG0VEw67BhGlVUxxK42BVkkQiICyo8YaVoECySyCdMLlzdqqaVo-L75O925jeNhhGvU67KLPT2rGmaIguGoyxSbKxpBSRKe3sd-Y-E9T0M_d9NRN5xj60E3vs3Q6SX-xDS7ZHr3FFzGHq5SQ0LA8Act083560Y-Hoouw82NW-aSmjPsVxtcd3vjeE_NykeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329105398</pqid></control><display><type>article</type><title>Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Zerouki, M. ; Ouali, M. Ould ; Benabou, L.</creator><creatorcontrib>Zerouki, M. ; Ouali, M. Ould ; Benabou, L.</creatorcontrib><description>This study deals with the mechanical behavior of the austenitic stainless steel, AISI 304, under quasi-static and impact loadings. In particular, the evolution of the transformation-induced plasticity (TRIP) is investigated. Several compression tests have been performed at various strain rates under both static and impact conditions (crash tests). In order to show the influence of the strain rate on the phase transformation, the microstructures of as-received and deformed specimens have been observed with a scanning electron microscope. Then, the newly formed ferromagnetic martensitic phase is analyzed with the help of the vibrating sample magnetic (VSM) method and by X-ray diffraction (XRD). The results obtained from the mechanical testing indicate that the TRIP effect is actually occurring since a significant change of the curve slope is visible during the hardening regime in the stress–strain curve. The VSM and XRD techniques, on the other hand, show that the proportion of the martensitic phase is reduced when the strain rate is increased. The quantity of martensite formed is greater when quasi-static loadings are applied to the material.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05527-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenitic stainless steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compression tests ; Crashworthiness ; Ferromagnetism ; Impact loads ; Martensite ; Martensitic transformations ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Mechanical tests ; Metallic Materials ; Metallurgical analysis ; Metallurgy &amp; Metallurgical Engineering ; Nanotechnology ; Phase transitions ; Science &amp; Technology ; Strain rate ; Structural Materials ; Surfaces and Interfaces ; Technology ; Thin Films ; X-ray diffraction</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020, Vol.51 (1), p.252-262</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000495708200002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c363t-f903bb925fed8eee7c9293c7aa0b9705ee0e7d1aca2409072ce07f5f527b488b3</citedby><cites>FETCH-LOGICAL-c363t-f903bb925fed8eee7c9293c7aa0b9705ee0e7d1aca2409072ce07f5f527b488b3</cites><orcidid>0000-0001-7958-4974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05527-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05527-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zerouki, M.</creatorcontrib><creatorcontrib>Ouali, M. Ould</creatorcontrib><creatorcontrib>Benabou, L.</creatorcontrib><title>Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><addtitle>METALL MATER TRANS A</addtitle><description>This study deals with the mechanical behavior of the austenitic stainless steel, AISI 304, under quasi-static and impact loadings. In particular, the evolution of the transformation-induced plasticity (TRIP) is investigated. Several compression tests have been performed at various strain rates under both static and impact conditions (crash tests). In order to show the influence of the strain rate on the phase transformation, the microstructures of as-received and deformed specimens have been observed with a scanning electron microscope. Then, the newly formed ferromagnetic martensitic phase is analyzed with the help of the vibrating sample magnetic (VSM) method and by X-ray diffraction (XRD). The results obtained from the mechanical testing indicate that the TRIP effect is actually occurring since a significant change of the curve slope is visible during the hardening regime in the stress–strain curve. The VSM and XRD techniques, on the other hand, show that the proportion of the martensitic phase is reduced when the strain rate is increased. The quantity of martensite formed is greater when quasi-static loadings are applied to the material.</description><subject>Austenitic stainless steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compression tests</subject><subject>Crashworthiness</subject><subject>Ferromagnetism</subject><subject>Impact loads</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Metallic Materials</subject><subject>Metallurgical analysis</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Science &amp; Technology</subject><subject>Strain rate</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thin Films</subject><subject>X-ray diffraction</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkEFP2zAUgKOJSStlf2AnSzuijGc7juPjqIAhdWPS4Gw5znNJldrFTpnWX49pJrghTn6H77P9vqL4QuEbBZBnidK6piVQVYIQTJb7D8WMioqXVFVwlGeQvBQ145-K45TWABnl9az49RNHMwy7uOqtGcjve5OQ3EbjkwtxY8Y-eGJ8R87x3jz2IZLgyJ8RcUjkzncYyfVma-xIlsF0vV-dFB-dGRJ-_n_Oi7vLi9vFj3J5c3W9-L4sLa_5WDoFvG0VEw67BhGlVUxxK42BVkkQiICyo8YaVoECySyCdMLlzdqqaVo-L75O925jeNhhGvU67KLPT2rGmaIguGoyxSbKxpBSRKe3sd-Y-E9T0M_d9NRN5xj60E3vs3Q6SX-xDS7ZHr3FFzGHq5SQ0LA8Act083560Y-Hoouw82NW-aSmjPsVxtcd3vjeE_NykeA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zerouki, M.</creator><creator>Ouali, M. Ould</creator><creator>Benabou, L.</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-7958-4974</orcidid></search><sort><creationdate>2020</creationdate><title>Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading</title><author>Zerouki, M. ; Ouali, M. Ould ; Benabou, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f903bb925fed8eee7c9293c7aa0b9705ee0e7d1aca2409072ce07f5f527b488b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compression tests</topic><topic>Crashworthiness</topic><topic>Ferromagnetism</topic><topic>Impact loads</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Metallic Materials</topic><topic>Metallurgical analysis</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Science &amp; Technology</topic><topic>Strain rate</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thin Films</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerouki, M.</creatorcontrib><creatorcontrib>Ouali, M. Ould</creatorcontrib><creatorcontrib>Benabou, L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerouki, M.</au><au>Ouali, M. Ould</au><au>Benabou, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><stitle>METALL MATER TRANS A</stitle><date>2020</date><risdate>2020</risdate><volume>51</volume><issue>1</issue><spage>252</spage><epage>262</epage><pages>252-262</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>This study deals with the mechanical behavior of the austenitic stainless steel, AISI 304, under quasi-static and impact loadings. In particular, the evolution of the transformation-induced plasticity (TRIP) is investigated. Several compression tests have been performed at various strain rates under both static and impact conditions (crash tests). In order to show the influence of the strain rate on the phase transformation, the microstructures of as-received and deformed specimens have been observed with a scanning electron microscope. Then, the newly formed ferromagnetic martensitic phase is analyzed with the help of the vibrating sample magnetic (VSM) method and by X-ray diffraction (XRD). The results obtained from the mechanical testing indicate that the TRIP effect is actually occurring since a significant change of the curve slope is visible during the hardening regime in the stress–strain curve. The VSM and XRD techniques, on the other hand, show that the proportion of the martensitic phase is reduced when the strain rate is increased. The quantity of martensite formed is greater when quasi-static loadings are applied to the material.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05527-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7958-4974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020, Vol.51 (1), p.252-262
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2329105398
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Austenitic stainless steels
Characterization and Evaluation of Materials
Chemistry and Materials Science
Compression tests
Crashworthiness
Ferromagnetism
Impact loads
Martensite
Martensitic transformations
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Mechanical tests
Metallic Materials
Metallurgical analysis
Metallurgy & Metallurgical Engineering
Nanotechnology
Phase transitions
Science & Technology
Strain rate
Structural Materials
Surfaces and Interfaces
Technology
Thin Films
X-ray diffraction
title Metallurgical Phase Transformation and Behavior of Steels Under Impact Loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallurgical%20Phase%20Transformation%20and%20Behavior%20of%20Steels%20Under%20Impact%20Loading&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Zerouki,%20M.&rft.date=2020&rft.volume=51&rft.issue=1&rft.spage=252&rft.epage=262&rft.pages=252-262&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05527-z&rft_dat=%3Cproquest_sprin%3E2329105398%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329105398&rft_id=info:pmid/&rfr_iscdi=true