Monadic Distributive Lattices
The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main...
Gespeichert in:
Veröffentlicht in: | Logic journal of the IGPL 2007, Vol.15 (5-6), p.535-551 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 5-6 |
container_start_page | 535 |
container_title | Logic journal of the IGPL |
container_volume | 15 |
creator | Figallo, Aldo V. Pascual, Inés Ziliani, Alicia |
description | The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras. |
doi_str_mv | 10.1093/jigpal/jzm039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232879975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzm039</oup_id><sourcerecordid>1644894361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-5ab98293ff293d1b21c6bece79de0956908a7b8bebcd5f837f8d27ecf80ff0a33</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhoMoOKdHj8Lw5KUu6bc0yVHmtEKHF2XiJSRpIqnbWpNW1F9vtcOrl-_9Dg_vCw9CpwRfEixgWvmXRq2n1dcGg9hDIwIZTwQXs_3fnyWYUXKIjmKsMMYzntIROlvWW1V6M7n2sQ1ed61_t5NCta03Nh6jA6fW0Z7scowebxYP8zwp7m_v5ldFYgBom1ClBU8FONefkuiUmExbY5koLRY0E5grprm22pTUcWCOlymzxnHsHFYAY3Q-9DahfutsbGVVd2HbT8oUUs6EYLSHkgEyoY4xWCeb4DcqfEqC5Y8AOQiQg4Cevxj4umv-RXfVvQT78Qer8CozBozK_OlZ4nzJVisgEuAb93ds5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232879975</pqid></control><display><type>article</type><title>Monadic Distributive Lattices</title><source>Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Figallo, Aldo V. ; Pascual, Inés ; Ziliani, Alicia</creator><creatorcontrib>Figallo, Aldo V. ; Pascual, Inés ; Ziliani, Alicia</creatorcontrib><description>The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzm039</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bounded distributive lattices ; congruence relations ; Priestley spaces ; subdirectly irreducible algebras</subject><ispartof>Logic journal of the IGPL, 2007, Vol.15 (5-6), p.535-551</ispartof><rights>The Author, 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007</rights><rights>The Author, 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-5ab98293ff293d1b21c6bece79de0956908a7b8bebcd5f837f8d27ecf80ff0a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Figallo, Aldo V.</creatorcontrib><creatorcontrib>Pascual, Inés</creatorcontrib><creatorcontrib>Ziliani, Alicia</creatorcontrib><title>Monadic Distributive Lattices</title><title>Logic journal of the IGPL</title><description>The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.</description><subject>Bounded distributive lattices</subject><subject>congruence relations</subject><subject>Priestley spaces</subject><subject>subdirectly irreducible algebras</subject><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhoMoOKdHj8Lw5KUu6bc0yVHmtEKHF2XiJSRpIqnbWpNW1F9vtcOrl-_9Dg_vCw9CpwRfEixgWvmXRq2n1dcGg9hDIwIZTwQXs_3fnyWYUXKIjmKsMMYzntIROlvWW1V6M7n2sQ1ed61_t5NCta03Nh6jA6fW0Z7scowebxYP8zwp7m_v5ldFYgBom1ClBU8FONefkuiUmExbY5koLRY0E5grprm22pTUcWCOlymzxnHsHFYAY3Q-9DahfutsbGVVd2HbT8oUUs6EYLSHkgEyoY4xWCeb4DcqfEqC5Y8AOQiQg4Cevxj4umv-RXfVvQT78Qer8CozBozK_OlZ4nzJVisgEuAb93ds5A</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Figallo, Aldo V.</creator><creator>Pascual, Inés</creator><creator>Ziliani, Alicia</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2007</creationdate><title>Monadic Distributive Lattices</title><author>Figallo, Aldo V. ; Pascual, Inés ; Ziliani, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-5ab98293ff293d1b21c6bece79de0956908a7b8bebcd5f837f8d27ecf80ff0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bounded distributive lattices</topic><topic>congruence relations</topic><topic>Priestley spaces</topic><topic>subdirectly irreducible algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figallo, Aldo V.</creatorcontrib><creatorcontrib>Pascual, Inés</creatorcontrib><creatorcontrib>Ziliani, Alicia</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figallo, Aldo V.</au><au>Pascual, Inés</au><au>Ziliani, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monadic Distributive Lattices</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2007</date><risdate>2007</risdate><volume>15</volume><issue>5-6</issue><spage>535</spage><epage>551</epage><pages>535-551</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzm039</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-0751 |
ispartof | Logic journal of the IGPL, 2007, Vol.15 (5-6), p.535-551 |
issn | 1367-0751 1368-9894 |
language | eng |
recordid | cdi_proquest_journals_232879975 |
source | Business Source Complete; Oxford University Press Journals All Titles (1996-Current) |
subjects | Bounded distributive lattices congruence relations Priestley spaces subdirectly irreducible algebras |
title | Monadic Distributive Lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monadic%20Distributive%20Lattices&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Figallo,%20Aldo%20V.&rft.date=2007&rft.volume=15&rft.issue=5-6&rft.spage=535&rft.epage=551&rft.pages=535-551&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzm039&rft_dat=%3Cproquest_cross%3E1644894361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232879975&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzm039&rfr_iscdi=true |