Monadic Distributive Lattices

The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logic journal of the IGPL 2007, Vol.15 (5-6), p.535-551
Hauptverfasser: Figallo, Aldo V., Pascual, Inés, Ziliani, Alicia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 5-6
container_start_page 535
container_title Logic journal of the IGPL
container_volume 15
creator Figallo, Aldo V.
Pascual, Inés
Ziliani, Alicia
description The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.
doi_str_mv 10.1093/jigpal/jzm039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232879975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzm039</oup_id><sourcerecordid>1644894361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-5ab98293ff293d1b21c6bece79de0956908a7b8bebcd5f837f8d27ecf80ff0a33</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhoMoOKdHj8Lw5KUu6bc0yVHmtEKHF2XiJSRpIqnbWpNW1F9vtcOrl-_9Dg_vCw9CpwRfEixgWvmXRq2n1dcGg9hDIwIZTwQXs_3fnyWYUXKIjmKsMMYzntIROlvWW1V6M7n2sQ1ed61_t5NCta03Nh6jA6fW0Z7scowebxYP8zwp7m_v5ldFYgBom1ClBU8FONefkuiUmExbY5koLRY0E5grprm22pTUcWCOlymzxnHsHFYAY3Q-9DahfutsbGVVd2HbT8oUUs6EYLSHkgEyoY4xWCeb4DcqfEqC5Y8AOQiQg4Cevxj4umv-RXfVvQT78Qer8CozBozK_OlZ4nzJVisgEuAb93ds5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232879975</pqid></control><display><type>article</type><title>Monadic Distributive Lattices</title><source>Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Figallo, Aldo V. ; Pascual, Inés ; Ziliani, Alicia</creator><creatorcontrib>Figallo, Aldo V. ; Pascual, Inés ; Ziliani, Alicia</creatorcontrib><description>The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzm039</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bounded distributive lattices ; congruence relations ; Priestley spaces ; subdirectly irreducible algebras</subject><ispartof>Logic journal of the IGPL, 2007, Vol.15 (5-6), p.535-551</ispartof><rights>The Author, 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007</rights><rights>The Author, 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-5ab98293ff293d1b21c6bece79de0956908a7b8bebcd5f837f8d27ecf80ff0a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Figallo, Aldo V.</creatorcontrib><creatorcontrib>Pascual, Inés</creatorcontrib><creatorcontrib>Ziliani, Alicia</creatorcontrib><title>Monadic Distributive Lattices</title><title>Logic journal of the IGPL</title><description>The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.</description><subject>Bounded distributive lattices</subject><subject>congruence relations</subject><subject>Priestley spaces</subject><subject>subdirectly irreducible algebras</subject><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhoMoOKdHj8Lw5KUu6bc0yVHmtEKHF2XiJSRpIqnbWpNW1F9vtcOrl-_9Dg_vCw9CpwRfEixgWvmXRq2n1dcGg9hDIwIZTwQXs_3fnyWYUXKIjmKsMMYzntIROlvWW1V6M7n2sQ1ed61_t5NCta03Nh6jA6fW0Z7scowebxYP8zwp7m_v5ldFYgBom1ClBU8FONefkuiUmExbY5koLRY0E5grprm22pTUcWCOlymzxnHsHFYAY3Q-9DahfutsbGVVd2HbT8oUUs6EYLSHkgEyoY4xWCeb4DcqfEqC5Y8AOQiQg4Cevxj4umv-RXfVvQT78Qer8CozBozK_OlZ4nzJVisgEuAb93ds5A</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Figallo, Aldo V.</creator><creator>Pascual, Inés</creator><creator>Ziliani, Alicia</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2007</creationdate><title>Monadic Distributive Lattices</title><author>Figallo, Aldo V. ; Pascual, Inés ; Ziliani, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-5ab98293ff293d1b21c6bece79de0956908a7b8bebcd5f837f8d27ecf80ff0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bounded distributive lattices</topic><topic>congruence relations</topic><topic>Priestley spaces</topic><topic>subdirectly irreducible algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figallo, Aldo V.</creatorcontrib><creatorcontrib>Pascual, Inés</creatorcontrib><creatorcontrib>Ziliani, Alicia</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figallo, Aldo V.</au><au>Pascual, Inés</au><au>Ziliani, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monadic Distributive Lattices</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2007</date><risdate>2007</risdate><volume>15</volume><issue>5-6</issue><spage>535</spage><epage>551</epage><pages>535-551</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>The purpose of this paper is to investigate the variety of algebras, which we call monadic distributive lattices, as a natural generalization of monadic Heyting algebras [16]. It is worth mentioning that the latter is a proper subvariety of the first one, as it is shown in a simple example. Our main interest is the characterization of simple and subdirectly irreducible monadic distributive lattices. In order to do this, a duality theory for these algebras is developed. The duality enables us to describe the lattice of congruences on monadic distributive lattices. Finally, our attention is focused upon the relationship between the category of dual spaces associatted with these algebras and the category of perfect Ono frames considered by Bezhanishvili in order to represent monadic Heyting algebras.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzm039</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-0751
ispartof Logic journal of the IGPL, 2007, Vol.15 (5-6), p.535-551
issn 1367-0751
1368-9894
language eng
recordid cdi_proquest_journals_232879975
source Business Source Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Bounded distributive lattices
congruence relations
Priestley spaces
subdirectly irreducible algebras
title Monadic Distributive Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monadic%20Distributive%20Lattices&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Figallo,%20Aldo%20V.&rft.date=2007&rft.volume=15&rft.issue=5-6&rft.spage=535&rft.epage=551&rft.pages=535-551&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzm039&rft_dat=%3Cproquest_cross%3E1644894361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232879975&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzm039&rfr_iscdi=true