Multifunctional BSA Scaffolds Prepared with a Novel Combination of UV‐Crosslinking Systems
This study presents the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine that ensures the preparation of biocompatible hydrogels. Fourier transform infrared spectroscopy reveals that the synthesis conditions do not induce prot...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2019-12, Vol.220 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Macromolecular chemistry and physics |
container_volume | 220 |
creator | Rusu, Alina Gabriela Chiriac, Aurica P. Nita, Loredana Elena Mititelu‐Tartau, Liliana Tudorachi, Nita Ghilan, Alina Rusu, Daniela |
description | This study presents the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine that ensures the preparation of biocompatible hydrogels. Fourier transform infrared spectroscopy reveals that the synthesis conditions do not induce protein denaturation and confirms the potential UV‐crosslinking mechanism for albumin hydrogels realization. Thermal and morphological characterization indicates the formation of thermodynamically stable hydrogels with interconnected inner structure which presents a riboflavin concentration‐dependent porosity. The evolution of the hydrogel's decomposition products is analyzed by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectrometry and reveals a degradation pathway characterized by deamination of unreacted amino moieties and peptide NH groups, condensation, decomposition of the condensation products, and oxidation of N‐containing residues. The kinetics and pH‐responsive behavior of hydrogels are investigated by water uptake dynamics revealing a swelling mechanism which can be switched from a less Fickian to a non‐Fickian process by varying the crosslinker concentration. In vivo tests prove the high degree of biocompatibility of the new hydrogels, after oral administration in mice.
This study reports the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine. The characteristics of the synthesized systems are highlighted such as water uptake capacity in relation with the crosslinker content, thermo‐stability following UV irradiation, and also the biocompatibility, which is confirmed by the in vivo tests. |
doi_str_mv | 10.1002/macp.201900378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328646299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328646299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-75ca7598df538c7f71ac3517ffc752842f39272877b2aad160a7392fd0320ac03</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofdW0vS8RLaqFSKSsky3VscEnjECdU3fEJfCNfQqIiWLKa0cw9ozsXgFOMBhghcr7WphwQhCVClIs90MOM4IRKyvbbHhGSYMrIITiKcYUQEkjyHniaNnntXVOY2odC5_BiPoZzo50LeRbhrLKlrmwGN75-gRrehXebwzSsl77QHQGDg4vHr4_PtAox5r549cUznG9jbdfxGBw4nUd78lP7YHF1-ZDeJJP769t0PEkMZUORcGY0Z1JkjlFhuONYtwvMnTOcETEkjkrCieB8SbTO8Ahp3k5chihB2iDaB2e7u2UV3hoba7UKTdV-ExWhRIyGIyJlqxrsVKazWlmnysqvdbVVGKkuQdUlqH4TbAG5AzY-t9t_1Go6Tmd_7Dc1cHWL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328646299</pqid></control><display><type>article</type><title>Multifunctional BSA Scaffolds Prepared with a Novel Combination of UV‐Crosslinking Systems</title><source>Access via Wiley Online Library</source><creator>Rusu, Alina Gabriela ; Chiriac, Aurica P. ; Nita, Loredana Elena ; Mititelu‐Tartau, Liliana ; Tudorachi, Nita ; Ghilan, Alina ; Rusu, Daniela</creator><creatorcontrib>Rusu, Alina Gabriela ; Chiriac, Aurica P. ; Nita, Loredana Elena ; Mititelu‐Tartau, Liliana ; Tudorachi, Nita ; Ghilan, Alina ; Rusu, Daniela</creatorcontrib><description>This study presents the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine that ensures the preparation of biocompatible hydrogels. Fourier transform infrared spectroscopy reveals that the synthesis conditions do not induce protein denaturation and confirms the potential UV‐crosslinking mechanism for albumin hydrogels realization. Thermal and morphological characterization indicates the formation of thermodynamically stable hydrogels with interconnected inner structure which presents a riboflavin concentration‐dependent porosity. The evolution of the hydrogel's decomposition products is analyzed by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectrometry and reveals a degradation pathway characterized by deamination of unreacted amino moieties and peptide NH groups, condensation, decomposition of the condensation products, and oxidation of N‐containing residues. The kinetics and pH‐responsive behavior of hydrogels are investigated by water uptake dynamics revealing a swelling mechanism which can be switched from a less Fickian to a non‐Fickian process by varying the crosslinker concentration. In vivo tests prove the high degree of biocompatibility of the new hydrogels, after oral administration in mice.
This study reports the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine. The characteristics of the synthesized systems are highlighted such as water uptake capacity in relation with the crosslinker content, thermo‐stability following UV irradiation, and also the biocompatibility, which is confirmed by the in vivo tests.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201900378</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>albumin ; Biocompatibility ; Biomedical materials ; Biopolymer denaturation ; Condensates ; Crosslinking ; Decomposition ; Fourier transforms ; Hydrogels ; In vivo methods and tests ; Infrared analysis ; Infrared spectroscopy ; l‐arginine ; Mass spectrometry ; Morphology ; Oxidation ; Porosity ; Reaction kinetics ; Riboflavin ; Serum albumin ; Thermodynamic properties ; Thermogravimetric analysis ; UV‐crosslinking</subject><ispartof>Macromolecular chemistry and physics, 2019-12, Vol.220 (24), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-75ca7598df538c7f71ac3517ffc752842f39272877b2aad160a7392fd0320ac03</citedby><cites>FETCH-LOGICAL-c3548-75ca7598df538c7f71ac3517ffc752842f39272877b2aad160a7392fd0320ac03</cites><orcidid>0000-0001-7983-3811 ; 0000-0002-8538-9961 ; 0000-0001-8010-7921 ; 0000-0002-5788-3882 ; 0000-0002-8452-1780 ; 0000-0002-8913-7446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201900378$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201900378$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rusu, Alina Gabriela</creatorcontrib><creatorcontrib>Chiriac, Aurica P.</creatorcontrib><creatorcontrib>Nita, Loredana Elena</creatorcontrib><creatorcontrib>Mititelu‐Tartau, Liliana</creatorcontrib><creatorcontrib>Tudorachi, Nita</creatorcontrib><creatorcontrib>Ghilan, Alina</creatorcontrib><creatorcontrib>Rusu, Daniela</creatorcontrib><title>Multifunctional BSA Scaffolds Prepared with a Novel Combination of UV‐Crosslinking Systems</title><title>Macromolecular chemistry and physics</title><description>This study presents the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine that ensures the preparation of biocompatible hydrogels. Fourier transform infrared spectroscopy reveals that the synthesis conditions do not induce protein denaturation and confirms the potential UV‐crosslinking mechanism for albumin hydrogels realization. Thermal and morphological characterization indicates the formation of thermodynamically stable hydrogels with interconnected inner structure which presents a riboflavin concentration‐dependent porosity. The evolution of the hydrogel's decomposition products is analyzed by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectrometry and reveals a degradation pathway characterized by deamination of unreacted amino moieties and peptide NH groups, condensation, decomposition of the condensation products, and oxidation of N‐containing residues. The kinetics and pH‐responsive behavior of hydrogels are investigated by water uptake dynamics revealing a swelling mechanism which can be switched from a less Fickian to a non‐Fickian process by varying the crosslinker concentration. In vivo tests prove the high degree of biocompatibility of the new hydrogels, after oral administration in mice.
This study reports the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine. The characteristics of the synthesized systems are highlighted such as water uptake capacity in relation with the crosslinker content, thermo‐stability following UV irradiation, and also the biocompatibility, which is confirmed by the in vivo tests.</description><subject>albumin</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biopolymer denaturation</subject><subject>Condensates</subject><subject>Crosslinking</subject><subject>Decomposition</subject><subject>Fourier transforms</subject><subject>Hydrogels</subject><subject>In vivo methods and tests</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>l‐arginine</subject><subject>Mass spectrometry</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Porosity</subject><subject>Reaction kinetics</subject><subject>Riboflavin</subject><subject>Serum albumin</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>UV‐crosslinking</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofdW0vS8RLaqFSKSsky3VscEnjECdU3fEJfCNfQqIiWLKa0cw9ozsXgFOMBhghcr7WphwQhCVClIs90MOM4IRKyvbbHhGSYMrIITiKcYUQEkjyHniaNnntXVOY2odC5_BiPoZzo50LeRbhrLKlrmwGN75-gRrehXebwzSsl77QHQGDg4vHr4_PtAox5r549cUznG9jbdfxGBw4nUd78lP7YHF1-ZDeJJP769t0PEkMZUORcGY0Z1JkjlFhuONYtwvMnTOcETEkjkrCieB8SbTO8Ahp3k5chihB2iDaB2e7u2UV3hoba7UKTdV-ExWhRIyGIyJlqxrsVKazWlmnysqvdbVVGKkuQdUlqH4TbAG5AzY-t9t_1Go6Tmd_7Dc1cHWL</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Rusu, Alina Gabriela</creator><creator>Chiriac, Aurica P.</creator><creator>Nita, Loredana Elena</creator><creator>Mititelu‐Tartau, Liliana</creator><creator>Tudorachi, Nita</creator><creator>Ghilan, Alina</creator><creator>Rusu, Daniela</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7983-3811</orcidid><orcidid>https://orcid.org/0000-0002-8538-9961</orcidid><orcidid>https://orcid.org/0000-0001-8010-7921</orcidid><orcidid>https://orcid.org/0000-0002-5788-3882</orcidid><orcidid>https://orcid.org/0000-0002-8452-1780</orcidid><orcidid>https://orcid.org/0000-0002-8913-7446</orcidid></search><sort><creationdate>201912</creationdate><title>Multifunctional BSA Scaffolds Prepared with a Novel Combination of UV‐Crosslinking Systems</title><author>Rusu, Alina Gabriela ; Chiriac, Aurica P. ; Nita, Loredana Elena ; Mititelu‐Tartau, Liliana ; Tudorachi, Nita ; Ghilan, Alina ; Rusu, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-75ca7598df538c7f71ac3517ffc752842f39272877b2aad160a7392fd0320ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>albumin</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biopolymer denaturation</topic><topic>Condensates</topic><topic>Crosslinking</topic><topic>Decomposition</topic><topic>Fourier transforms</topic><topic>Hydrogels</topic><topic>In vivo methods and tests</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>l‐arginine</topic><topic>Mass spectrometry</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Porosity</topic><topic>Reaction kinetics</topic><topic>Riboflavin</topic><topic>Serum albumin</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>UV‐crosslinking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusu, Alina Gabriela</creatorcontrib><creatorcontrib>Chiriac, Aurica P.</creatorcontrib><creatorcontrib>Nita, Loredana Elena</creatorcontrib><creatorcontrib>Mititelu‐Tartau, Liliana</creatorcontrib><creatorcontrib>Tudorachi, Nita</creatorcontrib><creatorcontrib>Ghilan, Alina</creatorcontrib><creatorcontrib>Rusu, Daniela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusu, Alina Gabriela</au><au>Chiriac, Aurica P.</au><au>Nita, Loredana Elena</au><au>Mititelu‐Tartau, Liliana</au><au>Tudorachi, Nita</au><au>Ghilan, Alina</au><au>Rusu, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional BSA Scaffolds Prepared with a Novel Combination of UV‐Crosslinking Systems</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2019-12</date><risdate>2019</risdate><volume>220</volume><issue>24</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>This study presents the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine that ensures the preparation of biocompatible hydrogels. Fourier transform infrared spectroscopy reveals that the synthesis conditions do not induce protein denaturation and confirms the potential UV‐crosslinking mechanism for albumin hydrogels realization. Thermal and morphological characterization indicates the formation of thermodynamically stable hydrogels with interconnected inner structure which presents a riboflavin concentration‐dependent porosity. The evolution of the hydrogel's decomposition products is analyzed by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectrometry and reveals a degradation pathway characterized by deamination of unreacted amino moieties and peptide NH groups, condensation, decomposition of the condensation products, and oxidation of N‐containing residues. The kinetics and pH‐responsive behavior of hydrogels are investigated by water uptake dynamics revealing a swelling mechanism which can be switched from a less Fickian to a non‐Fickian process by varying the crosslinker concentration. In vivo tests prove the high degree of biocompatibility of the new hydrogels, after oral administration in mice.
This study reports the hydrogelation of bovine serum albumin by using a natural‐derived photo‐initiator system based on riboflavin and l‐arginine. The characteristics of the synthesized systems are highlighted such as water uptake capacity in relation with the crosslinker content, thermo‐stability following UV irradiation, and also the biocompatibility, which is confirmed by the in vivo tests.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.201900378</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7983-3811</orcidid><orcidid>https://orcid.org/0000-0002-8538-9961</orcidid><orcidid>https://orcid.org/0000-0001-8010-7921</orcidid><orcidid>https://orcid.org/0000-0002-5788-3882</orcidid><orcidid>https://orcid.org/0000-0002-8452-1780</orcidid><orcidid>https://orcid.org/0000-0002-8913-7446</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2019-12, Vol.220 (24), p.n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_journals_2328646299 |
source | Access via Wiley Online Library |
subjects | albumin Biocompatibility Biomedical materials Biopolymer denaturation Condensates Crosslinking Decomposition Fourier transforms Hydrogels In vivo methods and tests Infrared analysis Infrared spectroscopy l‐arginine Mass spectrometry Morphology Oxidation Porosity Reaction kinetics Riboflavin Serum albumin Thermodynamic properties Thermogravimetric analysis UV‐crosslinking |
title | Multifunctional BSA Scaffolds Prepared with a Novel Combination of UV‐Crosslinking Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20BSA%20Scaffolds%20Prepared%20with%20a%20Novel%20Combination%20of%20UV%E2%80%90Crosslinking%20Systems&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Rusu,%20Alina%20Gabriela&rft.date=2019-12&rft.volume=220&rft.issue=24&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201900378&rft_dat=%3Cproquest_cross%3E2328646299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328646299&rft_id=info:pmid/&rfr_iscdi=true |