Wide Potential Window Supercapacitors Using Open‐Shell Donor–Acceptor Conjugated Polymers with Stable N‐Doped States

Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-12, Vol.9 (47), p.n/a
Hauptverfasser: Wang, Kaiping, Huang, Lifeng, Eedugurala, Naresh, Zhang, Song, Sabuj, Md Abdus, Rai, Neeraj, Gu, Xiaodan, Azoulay, Jason D., Ng, Tse Nga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page
container_title Advanced energy materials
container_volume 9
creator Wang, Kaiping
Huang, Lifeng
Eedugurala, Naresh
Zhang, Song
Sabuj, Md Abdus
Rai, Neeraj
Gu, Xiaodan
Azoulay, Jason D.
Ng, Tse Nga
description Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐active materials. Here, a new Faradaic electrode material comprised of a narrow bandgap donor−acceptor conjugated polymer is demonstrated, which exhibits an open‐shell ground state, intrinsic electrical conductivity, and enhanced charge delocalization in the reduced state. These attributes afford very stable anodes with a coulombic efficiency of 99.6% and that retain 90% capacitance after 2000 charge–discharge cycles, exceeding other n‐dopable organic materials. Redox cycling processes are monitored in situ by optoelectronic measurements to separate chemical versus physical degradation mechanisms. Asymmetric supercapacitors fabricated using this polymer with p‐type PEDOT:PSS operate within a 3 V potential window, with a best‐in‐class energy density of 30.4 Wh kg−1 at a 1 A g−1 discharge rate, a power density of 14.4 kW kg−1 at a 10 A g−1 discharge rate, and a long cycle life critical to energy storage and management. This work demonstrates the application of a new class of stable and tunable redox‐active material for sustainable energy technologies. An open‐shell donor–acceptor conjugated polymer enhances charge delocalization in the reduced state and is demonstrated as a highly stable anode in supercapacitors, with 90% capacitance retention after 2000 redox cycles. Asymmetric supercapacitors using this n‐dopable polymer operate with a wide 3 V potential window, with a best‐in‐class energy density and a long cycle life critical to energy storage and management.
doi_str_mv 10.1002/aenm.201902806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328539067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328539067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3966-4e25dae199627aa0e2bdc0c04756e9cdcf45c4cd4638ff281a65d9010437358b3</originalsourceid><addsrcrecordid>eNqFkE1rwkAQhkNpoWK99rzQc-x-ZZM9itoPsFqw4jGsm4lGYjbdjYg9-RMK_Yf-kq5Y2mPnMsPM-7wDbxDcEtwlGNN7BdWmSzGRmCZYXAQtIggPRcLx5e_M6HXQcW6NfXFJMGOt4GNeZIBeTQNVU6gSzYsqMzs03dZgtaqVLhpjHZq5olqiSQ3V8fA5XUFZooGpjD0evnpaQ-1FqG-q9XapGsi8X7nfgOd2RbNC00YtSkBjjw5M7c9-0YC7Ca5yVTro_PR2MHsYvvWfwtHk8bnfG4WaSSFCDjTKFBApBY2VwkAXmcYa8zgSIHWmcx5prjMuWJLnNCFKRJnEBHMWsyhZsHZwd_atrXnfgmvStdnayr9MKaNJxCQWsVd1zyptjXMW8rS2xUbZfUpweoo4PUWc_kbsAXkGdkUJ-3_UaW84fvljvwFacYPe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328539067</pqid></control><display><type>article</type><title>Wide Potential Window Supercapacitors Using Open‐Shell Donor–Acceptor Conjugated Polymers with Stable N‐Doped States</title><source>Access via Wiley Online Library</source><creator>Wang, Kaiping ; Huang, Lifeng ; Eedugurala, Naresh ; Zhang, Song ; Sabuj, Md Abdus ; Rai, Neeraj ; Gu, Xiaodan ; Azoulay, Jason D. ; Ng, Tse Nga</creator><creatorcontrib>Wang, Kaiping ; Huang, Lifeng ; Eedugurala, Naresh ; Zhang, Song ; Sabuj, Md Abdus ; Rai, Neeraj ; Gu, Xiaodan ; Azoulay, Jason D. ; Ng, Tse Nga</creatorcontrib><description>Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐active materials. Here, a new Faradaic electrode material comprised of a narrow bandgap donor−acceptor conjugated polymer is demonstrated, which exhibits an open‐shell ground state, intrinsic electrical conductivity, and enhanced charge delocalization in the reduced state. These attributes afford very stable anodes with a coulombic efficiency of 99.6% and that retain 90% capacitance after 2000 charge–discharge cycles, exceeding other n‐dopable organic materials. Redox cycling processes are monitored in situ by optoelectronic measurements to separate chemical versus physical degradation mechanisms. Asymmetric supercapacitors fabricated using this polymer with p‐type PEDOT:PSS operate within a 3 V potential window, with a best‐in‐class energy density of 30.4 Wh kg−1 at a 1 A g−1 discharge rate, a power density of 14.4 kW kg−1 at a 10 A g−1 discharge rate, and a long cycle life critical to energy storage and management. This work demonstrates the application of a new class of stable and tunable redox‐active material for sustainable energy technologies. An open‐shell donor–acceptor conjugated polymer enhances charge delocalization in the reduced state and is demonstrated as a highly stable anode in supercapacitors, with 90% capacitance retention after 2000 redox cycles. Asymmetric supercapacitors using this n‐dopable polymer operate with a wide 3 V potential window, with a best‐in‐class energy density and a long cycle life critical to energy storage and management.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201902806</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electrical resistivity ; Electrode materials ; Energy management ; Energy storage ; Energy technology ; Flux density ; n‐type conjugated polymer ; open‐shell polymer ; Optoelectronics ; Organic chemistry ; Organic materials ; Polymers ; Supercapacitors</subject><ispartof>Advanced energy materials, 2019-12, Vol.9 (47), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3966-4e25dae199627aa0e2bdc0c04756e9cdcf45c4cd4638ff281a65d9010437358b3</citedby><cites>FETCH-LOGICAL-c3966-4e25dae199627aa0e2bdc0c04756e9cdcf45c4cd4638ff281a65d9010437358b3</cites><orcidid>0000-0001-6967-559X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201902806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201902806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Wang, Kaiping</creatorcontrib><creatorcontrib>Huang, Lifeng</creatorcontrib><creatorcontrib>Eedugurala, Naresh</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Sabuj, Md Abdus</creatorcontrib><creatorcontrib>Rai, Neeraj</creatorcontrib><creatorcontrib>Gu, Xiaodan</creatorcontrib><creatorcontrib>Azoulay, Jason D.</creatorcontrib><creatorcontrib>Ng, Tse Nga</creatorcontrib><title>Wide Potential Window Supercapacitors Using Open‐Shell Donor–Acceptor Conjugated Polymers with Stable N‐Doped States</title><title>Advanced energy materials</title><description>Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐active materials. Here, a new Faradaic electrode material comprised of a narrow bandgap donor−acceptor conjugated polymer is demonstrated, which exhibits an open‐shell ground state, intrinsic electrical conductivity, and enhanced charge delocalization in the reduced state. These attributes afford very stable anodes with a coulombic efficiency of 99.6% and that retain 90% capacitance after 2000 charge–discharge cycles, exceeding other n‐dopable organic materials. Redox cycling processes are monitored in situ by optoelectronic measurements to separate chemical versus physical degradation mechanisms. Asymmetric supercapacitors fabricated using this polymer with p‐type PEDOT:PSS operate within a 3 V potential window, with a best‐in‐class energy density of 30.4 Wh kg−1 at a 1 A g−1 discharge rate, a power density of 14.4 kW kg−1 at a 10 A g−1 discharge rate, and a long cycle life critical to energy storage and management. This work demonstrates the application of a new class of stable and tunable redox‐active material for sustainable energy technologies. An open‐shell donor–acceptor conjugated polymer enhances charge delocalization in the reduced state and is demonstrated as a highly stable anode in supercapacitors, with 90% capacitance retention after 2000 redox cycles. Asymmetric supercapacitors using this n‐dopable polymer operate with a wide 3 V potential window, with a best‐in‐class energy density and a long cycle life critical to energy storage and management.</description><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Flux density</subject><subject>n‐type conjugated polymer</subject><subject>open‐shell polymer</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Organic materials</subject><subject>Polymers</subject><subject>Supercapacitors</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rwkAQhkNpoWK99rzQc-x-ZZM9itoPsFqw4jGsm4lGYjbdjYg9-RMK_Yf-kq5Y2mPnMsPM-7wDbxDcEtwlGNN7BdWmSzGRmCZYXAQtIggPRcLx5e_M6HXQcW6NfXFJMGOt4GNeZIBeTQNVU6gSzYsqMzs03dZgtaqVLhpjHZq5olqiSQ3V8fA5XUFZooGpjD0evnpaQ-1FqG-q9XapGsi8X7nfgOd2RbNC00YtSkBjjw5M7c9-0YC7Ca5yVTro_PR2MHsYvvWfwtHk8bnfG4WaSSFCDjTKFBApBY2VwkAXmcYa8zgSIHWmcx5prjMuWJLnNCFKRJnEBHMWsyhZsHZwd_atrXnfgmvStdnayr9MKaNJxCQWsVd1zyptjXMW8rS2xUbZfUpweoo4PUWc_kbsAXkGdkUJ-3_UaW84fvljvwFacYPe</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Wang, Kaiping</creator><creator>Huang, Lifeng</creator><creator>Eedugurala, Naresh</creator><creator>Zhang, Song</creator><creator>Sabuj, Md Abdus</creator><creator>Rai, Neeraj</creator><creator>Gu, Xiaodan</creator><creator>Azoulay, Jason D.</creator><creator>Ng, Tse Nga</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6967-559X</orcidid></search><sort><creationdate>20191201</creationdate><title>Wide Potential Window Supercapacitors Using Open‐Shell Donor–Acceptor Conjugated Polymers with Stable N‐Doped States</title><author>Wang, Kaiping ; Huang, Lifeng ; Eedugurala, Naresh ; Zhang, Song ; Sabuj, Md Abdus ; Rai, Neeraj ; Gu, Xiaodan ; Azoulay, Jason D. ; Ng, Tse Nga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3966-4e25dae199627aa0e2bdc0c04756e9cdcf45c4cd4638ff281a65d9010437358b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Flux density</topic><topic>n‐type conjugated polymer</topic><topic>open‐shell polymer</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Organic materials</topic><topic>Polymers</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaiping</creatorcontrib><creatorcontrib>Huang, Lifeng</creatorcontrib><creatorcontrib>Eedugurala, Naresh</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Sabuj, Md Abdus</creatorcontrib><creatorcontrib>Rai, Neeraj</creatorcontrib><creatorcontrib>Gu, Xiaodan</creatorcontrib><creatorcontrib>Azoulay, Jason D.</creatorcontrib><creatorcontrib>Ng, Tse Nga</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaiping</au><au>Huang, Lifeng</au><au>Eedugurala, Naresh</au><au>Zhang, Song</au><au>Sabuj, Md Abdus</au><au>Rai, Neeraj</au><au>Gu, Xiaodan</au><au>Azoulay, Jason D.</au><au>Ng, Tse Nga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide Potential Window Supercapacitors Using Open‐Shell Donor–Acceptor Conjugated Polymers with Stable N‐Doped States</atitle><jtitle>Advanced energy materials</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>47</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Supercapacitors have emerged as an important energy storage technology offering rapid power delivery, fast charging, and long cycle lifetimes. While extending the operational voltage is improving the overall energy and power densities, progress remains hindered by a lack of stable n‐type redox‐active materials. Here, a new Faradaic electrode material comprised of a narrow bandgap donor−acceptor conjugated polymer is demonstrated, which exhibits an open‐shell ground state, intrinsic electrical conductivity, and enhanced charge delocalization in the reduced state. These attributes afford very stable anodes with a coulombic efficiency of 99.6% and that retain 90% capacitance after 2000 charge–discharge cycles, exceeding other n‐dopable organic materials. Redox cycling processes are monitored in situ by optoelectronic measurements to separate chemical versus physical degradation mechanisms. Asymmetric supercapacitors fabricated using this polymer with p‐type PEDOT:PSS operate within a 3 V potential window, with a best‐in‐class energy density of 30.4 Wh kg−1 at a 1 A g−1 discharge rate, a power density of 14.4 kW kg−1 at a 10 A g−1 discharge rate, and a long cycle life critical to energy storage and management. This work demonstrates the application of a new class of stable and tunable redox‐active material for sustainable energy technologies. An open‐shell donor–acceptor conjugated polymer enhances charge delocalization in the reduced state and is demonstrated as a highly stable anode in supercapacitors, with 90% capacitance retention after 2000 redox cycles. Asymmetric supercapacitors using this n‐dopable polymer operate with a wide 3 V potential window, with a best‐in‐class energy density and a long cycle life critical to energy storage and management.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201902806</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6967-559X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-12, Vol.9 (47), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2328539067
source Access via Wiley Online Library
subjects Electrical resistivity
Electrode materials
Energy management
Energy storage
Energy technology
Flux density
n‐type conjugated polymer
open‐shell polymer
Optoelectronics
Organic chemistry
Organic materials
Polymers
Supercapacitors
title Wide Potential Window Supercapacitors Using Open‐Shell Donor–Acceptor Conjugated Polymers with Stable N‐Doped States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide%20Potential%20Window%20Supercapacitors%20Using%20Open%E2%80%90Shell%20Donor%E2%80%93Acceptor%20Conjugated%20Polymers%20with%20Stable%20N%E2%80%90Doped%20States&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Kaiping&rft.date=2019-12-01&rft.volume=9&rft.issue=47&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201902806&rft_dat=%3Cproquest_cross%3E2328539067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328539067&rft_id=info:pmid/&rfr_iscdi=true