Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing
The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the pe...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2004, Vol.99 (1), p.35-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Mathematical programming |
container_volume | 99 |
creator | BENSON, Hande Y SHANNO, David F VANDERBEI, Robert J |
description | The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified. |
doi_str_mv | 10.1007/s10107-003-0418-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232851117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>702960181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-7b0a10b65a49a480223d896cd380378085bcdef737ff7c2de1650d2a67ae30413</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgrf4Ab4vgMTqTZJPUmxQ_KgUvevAU0my2bukmNdmK_ntTWvA0j-F9zDxCLhFuEEDdZgQERQE4BYGasiMyQsElFVLIYzICYDWtJcIpOct5BQDItR6Rj1kYfOpiopvYhaHq_fAZm1y1MVUhBhfDt__ZoXUXvE3VJsVlsn3fheVd9bIHlQ1NFbZ98XF2XQ0-D2V7Tk5au87-4jDH5P3x4W36TOevT7Pp_Zw6DmygagEWYSFrKyZWaGCMN3oiXcM1cKVB1wvX-FZx1bbKscajrKFhVirreXmVj8nV3rec9rUt2WYVtymUSMM40zUiqkLCPcmlmHPyrdmkrrfp1yCYXYFmX6ApBZpdgUU7JtcHY5vLX22ywXX5X1gLwRQy_gf9d3C6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232851117</pqid></control><display><type>article</type><title>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>BENSON, Hande Y ; SHANNO, David F ; VANDERBEI, Robert J</creator><creatorcontrib>BENSON, Hande Y ; SHANNO, David F ; VANDERBEI, Robert J</creatorcontrib><description>The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-003-0418-2</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Digital Object Identifier ; Exact sciences and technology ; Linear programming ; Mathematical programming ; Methods ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Mathematical programming, 2004, Vol.99 (1), p.35-48</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-7b0a10b65a49a480223d896cd380378085bcdef737ff7c2de1650d2a67ae30413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15442712$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BENSON, Hande Y</creatorcontrib><creatorcontrib>SHANNO, David F</creatorcontrib><creatorcontrib>VANDERBEI, Robert J</creatorcontrib><title>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</title><title>Mathematical programming</title><description>The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Digital Object Identifier</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUE1LAzEQDaJgrf4Ab4vgMTqTZJPUmxQ_KgUvevAU0my2bukmNdmK_ntTWvA0j-F9zDxCLhFuEEDdZgQERQE4BYGasiMyQsElFVLIYzICYDWtJcIpOct5BQDItR6Rj1kYfOpiopvYhaHq_fAZm1y1MVUhBhfDt__ZoXUXvE3VJsVlsn3fheVd9bIHlQ1NFbZ98XF2XQ0-D2V7Tk5au87-4jDH5P3x4W36TOevT7Pp_Zw6DmygagEWYSFrKyZWaGCMN3oiXcM1cKVB1wvX-FZx1bbKscajrKFhVirreXmVj8nV3rec9rUt2WYVtymUSMM40zUiqkLCPcmlmHPyrdmkrrfp1yCYXYFmX6ApBZpdgUU7JtcHY5vLX22ywXX5X1gLwRQy_gf9d3C6</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>BENSON, Hande Y</creator><creator>SHANNO, David F</creator><creator>VANDERBEI, Robert J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2004</creationdate><title>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</title><author>BENSON, Hande Y ; SHANNO, David F ; VANDERBEI, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-7b0a10b65a49a480223d896cd380378085bcdef737ff7c2de1650d2a67ae30413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Digital Object Identifier</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BENSON, Hande Y</creatorcontrib><creatorcontrib>SHANNO, David F</creatorcontrib><creatorcontrib>VANDERBEI, Robert J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BENSON, Hande Y</au><au>SHANNO, David F</au><au>VANDERBEI, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</atitle><jtitle>Mathematical programming</jtitle><date>2004</date><risdate>2004</risdate><volume>99</volume><issue>1</issue><spage>35</spage><epage>48</epage><pages>35-48</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10107-003-0418-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2004, Vol.99 (1), p.35-48 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_232851117 |
source | SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete |
subjects | Algorithms Applied sciences Digital Object Identifier Exact sciences and technology Linear programming Mathematical programming Methods Operational research and scientific management Operational research. Management science |
title | Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interior-point%20methods%20for%20nonconvex%20nonlinear%20programming:%20Jamming%20and%20numerical%20testing&rft.jtitle=Mathematical%20programming&rft.au=BENSON,%20Hande%20Y&rft.date=2004&rft.volume=99&rft.issue=1&rft.spage=35&rft.epage=48&rft.pages=35-48&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-003-0418-2&rft_dat=%3Cproquest_cross%3E702960181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232851117&rft_id=info:pmid/&rfr_iscdi=true |