Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing

The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2004, Vol.99 (1), p.35-48
Hauptverfasser: BENSON, Hande Y, SHANNO, David F, VANDERBEI, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 35
container_title Mathematical programming
container_volume 99
creator BENSON, Hande Y
SHANNO, David F
VANDERBEI, Robert J
description The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.
doi_str_mv 10.1007/s10107-003-0418-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232851117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>702960181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-7b0a10b65a49a480223d896cd380378085bcdef737ff7c2de1650d2a67ae30413</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgrf4Ab4vgMTqTZJPUmxQ_KgUvevAU0my2bukmNdmK_ntTWvA0j-F9zDxCLhFuEEDdZgQERQE4BYGasiMyQsElFVLIYzICYDWtJcIpOct5BQDItR6Rj1kYfOpiopvYhaHq_fAZm1y1MVUhBhfDt__ZoXUXvE3VJsVlsn3fheVd9bIHlQ1NFbZ98XF2XQ0-D2V7Tk5au87-4jDH5P3x4W36TOevT7Pp_Zw6DmygagEWYSFrKyZWaGCMN3oiXcM1cKVB1wvX-FZx1bbKscajrKFhVirreXmVj8nV3rec9rUt2WYVtymUSMM40zUiqkLCPcmlmHPyrdmkrrfp1yCYXYFmX6ApBZpdgUU7JtcHY5vLX22ywXX5X1gLwRQy_gf9d3C6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232851117</pqid></control><display><type>article</type><title>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>BENSON, Hande Y ; SHANNO, David F ; VANDERBEI, Robert J</creator><creatorcontrib>BENSON, Hande Y ; SHANNO, David F ; VANDERBEI, Robert J</creatorcontrib><description>The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-003-0418-2</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Digital Object Identifier ; Exact sciences and technology ; Linear programming ; Mathematical programming ; Methods ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Mathematical programming, 2004, Vol.99 (1), p.35-48</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-7b0a10b65a49a480223d896cd380378085bcdef737ff7c2de1650d2a67ae30413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15442712$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BENSON, Hande Y</creatorcontrib><creatorcontrib>SHANNO, David F</creatorcontrib><creatorcontrib>VANDERBEI, Robert J</creatorcontrib><title>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</title><title>Mathematical programming</title><description>The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Digital Object Identifier</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUE1LAzEQDaJgrf4Ab4vgMTqTZJPUmxQ_KgUvevAU0my2bukmNdmK_ntTWvA0j-F9zDxCLhFuEEDdZgQERQE4BYGasiMyQsElFVLIYzICYDWtJcIpOct5BQDItR6Rj1kYfOpiopvYhaHq_fAZm1y1MVUhBhfDt__ZoXUXvE3VJsVlsn3fheVd9bIHlQ1NFbZ98XF2XQ0-D2V7Tk5au87-4jDH5P3x4W36TOevT7Pp_Zw6DmygagEWYSFrKyZWaGCMN3oiXcM1cKVB1wvX-FZx1bbKscajrKFhVirreXmVj8nV3rec9rUt2WYVtymUSMM40zUiqkLCPcmlmHPyrdmkrrfp1yCYXYFmX6ApBZpdgUU7JtcHY5vLX22ywXX5X1gLwRQy_gf9d3C6</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>BENSON, Hande Y</creator><creator>SHANNO, David F</creator><creator>VANDERBEI, Robert J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2004</creationdate><title>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</title><author>BENSON, Hande Y ; SHANNO, David F ; VANDERBEI, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-7b0a10b65a49a480223d896cd380378085bcdef737ff7c2de1650d2a67ae30413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Digital Object Identifier</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BENSON, Hande Y</creatorcontrib><creatorcontrib>SHANNO, David F</creatorcontrib><creatorcontrib>VANDERBEI, Robert J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BENSON, Hande Y</au><au>SHANNO, David F</au><au>VANDERBEI, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing</atitle><jtitle>Mathematical programming</jtitle><date>2004</date><risdate>2004</risdate><volume>99</volume><issue>1</issue><spage>35</spage><epage>48</epage><pages>35-48</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10107-003-0418-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2004, Vol.99 (1), p.35-48
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_232851117
source SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete
subjects Algorithms
Applied sciences
Digital Object Identifier
Exact sciences and technology
Linear programming
Mathematical programming
Methods
Operational research and scientific management
Operational research. Management science
title Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interior-point%20methods%20for%20nonconvex%20nonlinear%20programming:%20Jamming%20and%20numerical%20testing&rft.jtitle=Mathematical%20programming&rft.au=BENSON,%20Hande%20Y&rft.date=2004&rft.volume=99&rft.issue=1&rft.spage=35&rft.epage=48&rft.pages=35-48&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-003-0418-2&rft_dat=%3Cproquest_cross%3E702960181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232851117&rft_id=info:pmid/&rfr_iscdi=true