An algorithmic framework for the exact solution of the prize-collecting steiner tree problem

The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices not contained in the subtree. PCST appears frequently in the design of utility netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2006-02, Vol.105 (2-3), p.427-449
Hauptverfasser: LJUBIC, Ivana, WEISKIRCHER, René, PFERSCHY, Ulrich, KLAU, Gunnar W, MUTZEL, Petra, FISCHETTI, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 2-3
container_start_page 427
container_title Mathematical programming
container_volume 105
creator LJUBIC, Ivana
WEISKIRCHER, René
PFERSCHY, Ulrich
KLAU, Gunnar W
MUTZEL, Petra
FISCHETTI, Matteo
description The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices not contained in the subtree. PCST appears frequently in the design of utility networks where profit generating customers and the network connecting them have to be chosen in the most profitable way. Our main contribution is the formulation and implementation of a branch-and-cut algorithm based on a directed graph model where we combine several state-of-the-art methods previously used for the Steiner tree problem. Our method outperforms the previously published results on the standard benchmark set of problems. We can solve all benchmark instances from the literature to optimality, including some of them for which the optimum was not known. Compared to a recent algorithm by Lucena and Resende, our new method is faster by more than two orders of magnitude. We also introduce a new class of more challenging instances and present computational results for them. Finally, for a set of large-scale real-world instances arising in the design of fiber optic networks, we also obtain optimal solution values. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10107-005-0660-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232850336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>939710741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-665a1277bbc8fa3aae562e6c75ff850cfb1a5686f088c03144fe99966e9cb7433</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_wFsQPEYnm93Z7LEUv6DgRW9CyIak3bq70STF6q83tQVPAzPvB_MQcsnhhgPUt5EDh5oBVAwQgW2PyISXAlmJJR6TCUBRsQo5nJKzGNcAwIWUE_I2G6nulz50aTV0hrqgB_vlwzt1PtC0stRutUk0-n6TOj9S7_62H6H7scz4vrcmdeOSxmS70WZLsLurb3s7nJMTp_toLw5zSl7v717mj2zx_PA0ny2YESgTQ6w0L-q6bY10WmhtKywsmrpyTlZgXMt1hRIdSGlA8LJ0tmkaRNuYti6FmJKrfW7u_dzYmNTab8KYK1UhihwhBGYR34tM8DEG61T-YdDhW3FQO4Zqz1BlhmrHUG2z5_oQrKPRfYYzmi7-G-tSNtkjfgHaV3KH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232850336</pqid></control><display><type>article</type><title>An algorithmic framework for the exact solution of the prize-collecting steiner tree problem</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>LJUBIC, Ivana ; WEISKIRCHER, René ; PFERSCHY, Ulrich ; KLAU, Gunnar W ; MUTZEL, Petra ; FISCHETTI, Matteo</creator><creatorcontrib>LJUBIC, Ivana ; WEISKIRCHER, René ; PFERSCHY, Ulrich ; KLAU, Gunnar W ; MUTZEL, Petra ; FISCHETTI, Matteo</creatorcontrib><description>The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices not contained in the subtree. PCST appears frequently in the design of utility networks where profit generating customers and the network connecting them have to be chosen in the most profitable way. Our main contribution is the formulation and implementation of a branch-and-cut algorithm based on a directed graph model where we combine several state-of-the-art methods previously used for the Steiner tree problem. Our method outperforms the previously published results on the standard benchmark set of problems. We can solve all benchmark instances from the literature to optimality, including some of them for which the optimum was not known. Compared to a recent algorithm by Lucena and Resende, our new method is faster by more than two orders of magnitude. We also introduce a new class of more challenging instances and present computational results for them. Finally, for a set of large-scale real-world instances arising in the design of fiber optic networks, we also obtain optimal solution values. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-005-0660-x</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Costs ; Customers ; Digital Object Identifier ; Energy industry ; Exact sciences and technology ; Fiber optic networks ; Graphs ; Mathematical models ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Profits ; Studies ; Theory ; Traveling salesman problem</subject><ispartof>Mathematical programming, 2006-02, Vol.105 (2-3), p.427-449</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-665a1277bbc8fa3aae562e6c75ff850cfb1a5686f088c03144fe99966e9cb7433</citedby><cites>FETCH-LOGICAL-c368t-665a1277bbc8fa3aae562e6c75ff850cfb1a5686f088c03144fe99966e9cb7433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17489010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LJUBIC, Ivana</creatorcontrib><creatorcontrib>WEISKIRCHER, René</creatorcontrib><creatorcontrib>PFERSCHY, Ulrich</creatorcontrib><creatorcontrib>KLAU, Gunnar W</creatorcontrib><creatorcontrib>MUTZEL, Petra</creatorcontrib><creatorcontrib>FISCHETTI, Matteo</creatorcontrib><title>An algorithmic framework for the exact solution of the prize-collecting steiner tree problem</title><title>Mathematical programming</title><description>The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices not contained in the subtree. PCST appears frequently in the design of utility networks where profit generating customers and the network connecting them have to be chosen in the most profitable way. Our main contribution is the formulation and implementation of a branch-and-cut algorithm based on a directed graph model where we combine several state-of-the-art methods previously used for the Steiner tree problem. Our method outperforms the previously published results on the standard benchmark set of problems. We can solve all benchmark instances from the literature to optimality, including some of them for which the optimum was not known. Compared to a recent algorithm by Lucena and Resende, our new method is faster by more than two orders of magnitude. We also introduce a new class of more challenging instances and present computational results for them. Finally, for a set of large-scale real-world instances arising in the design of fiber optic networks, we also obtain optimal solution values. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Costs</subject><subject>Customers</subject><subject>Digital Object Identifier</subject><subject>Energy industry</subject><subject>Exact sciences and technology</subject><subject>Fiber optic networks</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Profits</subject><subject>Studies</subject><subject>Theory</subject><subject>Traveling salesman problem</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LAzEQhoMoWKs_wFsQPEYnm93Z7LEUv6DgRW9CyIak3bq70STF6q83tQVPAzPvB_MQcsnhhgPUt5EDh5oBVAwQgW2PyISXAlmJJR6TCUBRsQo5nJKzGNcAwIWUE_I2G6nulz50aTV0hrqgB_vlwzt1PtC0stRutUk0-n6TOj9S7_62H6H7scz4vrcmdeOSxmS70WZLsLurb3s7nJMTp_toLw5zSl7v717mj2zx_PA0ny2YESgTQ6w0L-q6bY10WmhtKywsmrpyTlZgXMt1hRIdSGlA8LJ0tmkaRNuYti6FmJKrfW7u_dzYmNTab8KYK1UhihwhBGYR34tM8DEG61T-YdDhW3FQO4Zqz1BlhmrHUG2z5_oQrKPRfYYzmi7-G-tSNtkjfgHaV3KH</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>LJUBIC, Ivana</creator><creator>WEISKIRCHER, René</creator><creator>PFERSCHY, Ulrich</creator><creator>KLAU, Gunnar W</creator><creator>MUTZEL, Petra</creator><creator>FISCHETTI, Matteo</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060201</creationdate><title>An algorithmic framework for the exact solution of the prize-collecting steiner tree problem</title><author>LJUBIC, Ivana ; WEISKIRCHER, René ; PFERSCHY, Ulrich ; KLAU, Gunnar W ; MUTZEL, Petra ; FISCHETTI, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-665a1277bbc8fa3aae562e6c75ff850cfb1a5686f088c03144fe99966e9cb7433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Costs</topic><topic>Customers</topic><topic>Digital Object Identifier</topic><topic>Energy industry</topic><topic>Exact sciences and technology</topic><topic>Fiber optic networks</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Profits</topic><topic>Studies</topic><topic>Theory</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LJUBIC, Ivana</creatorcontrib><creatorcontrib>WEISKIRCHER, René</creatorcontrib><creatorcontrib>PFERSCHY, Ulrich</creatorcontrib><creatorcontrib>KLAU, Gunnar W</creatorcontrib><creatorcontrib>MUTZEL, Petra</creatorcontrib><creatorcontrib>FISCHETTI, Matteo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LJUBIC, Ivana</au><au>WEISKIRCHER, René</au><au>PFERSCHY, Ulrich</au><au>KLAU, Gunnar W</au><au>MUTZEL, Petra</au><au>FISCHETTI, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithmic framework for the exact solution of the prize-collecting steiner tree problem</atitle><jtitle>Mathematical programming</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>105</volume><issue>2-3</issue><spage>427</spage><epage>449</epage><pages>427-449</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>The Prize-Collecting Steiner Tree Problem (PCST) on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices not contained in the subtree. PCST appears frequently in the design of utility networks where profit generating customers and the network connecting them have to be chosen in the most profitable way. Our main contribution is the formulation and implementation of a branch-and-cut algorithm based on a directed graph model where we combine several state-of-the-art methods previously used for the Steiner tree problem. Our method outperforms the previously published results on the standard benchmark set of problems. We can solve all benchmark instances from the literature to optimality, including some of them for which the optimum was not known. Compared to a recent algorithm by Lucena and Resende, our new method is faster by more than two orders of magnitude. We also introduce a new class of more challenging instances and present computational results for them. Finally, for a set of large-scale real-world instances arising in the design of fiber optic networks, we also obtain optimal solution values. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10107-005-0660-x</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2006-02, Vol.105 (2-3), p.427-449
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_232850336
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Applied sciences
Approximation
Costs
Customers
Digital Object Identifier
Energy industry
Exact sciences and technology
Fiber optic networks
Graphs
Mathematical models
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization
Profits
Studies
Theory
Traveling salesman problem
title An algorithmic framework for the exact solution of the prize-collecting steiner tree problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithmic%20framework%20for%20the%20exact%20solution%20of%20the%20prize-collecting%20steiner%20tree%20problem&rft.jtitle=Mathematical%20programming&rft.au=LJUBIC,%20Ivana&rft.date=2006-02-01&rft.volume=105&rft.issue=2-3&rft.spage=427&rft.epage=449&rft.pages=427-449&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-005-0660-x&rft_dat=%3Cproquest_cross%3E939710741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232850336&rft_id=info:pmid/&rfr_iscdi=true