Numerical and microcontroller simulations, and electronic circuit realisation of Minorsky’s equation

This work deals with the mathematical analysis, numerical and microcontroller simulations and electronic circuit realisation of the dynamics of Minorsky’s equation. We consider the model including the nonlinear derivative feedback with delay. The study of stability is done by linearising the equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2020-12, Vol.94 (1), Article 12
Hauptverfasser: Gaël, Ngouabo Ulrich, Samuel, Noubissie, Bertrand, Fotsin Hilaire, Paul, Woafo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Pramāṇa
container_volume 94
creator Gaël, Ngouabo Ulrich
Samuel, Noubissie
Bertrand, Fotsin Hilaire
Paul, Woafo
description This work deals with the mathematical analysis, numerical and microcontroller simulations and electronic circuit realisation of the dynamics of Minorsky’s equation. We consider the model including the nonlinear derivative feedback with delay. The study of stability is done by linearising the equation. An alternation between the zones of stability and instability as a function of the values of the delay is found. The bifurcation diagrams allowed us to validate the analytical predictions. These bifurcation diagrams show Hopf bifurcations and complex dynamics of the system. The analog and microcontroller simulations together with the experimental analysis were carried out in order to validate the theoretical analysis.
doi_str_mv 10.1007/s12043-019-1867-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328365782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328365782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2e316f0bb5f0f5b1d379ff575ada2ea0a3d0f26d883f7655b197e2d8a3a08a9c3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqXwAGyWWDH4J46dEVX8SQUWmC3HsZFLErd2MnTjNXg9ngS3QWJiulc63zlX9wBwTvAVwVhcJ0JxwRAmFSKyFIgdgBmuBEOCEHKYd4YLVFBZHYOTlFY4gwXjM-Cex85Gb3QLdd_AzpsYTOiHGNrWRph8N7Z68KFPl3vAttZksfcGGh_N6AcYrW592kMwOPjk-xDTx_b78ytBuxn3wik4crpN9ux3zsHb3e3r4gEtX-4fFzdLZBgpB0RtHg7XNXfY8Zo0TFTOccF1o6nVWLMGO1o2UjInSp6JSljaSM00lroybA4uptx1DJvRpkGtwhj7fFJRRiUruZA0U2Si8rMpRevUOvpOx60iWO3qVFOdKrekdnUqlj108qTM9u82_iX_b_oBjoV7QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328365782</pqid></control><display><type>article</type><title>Numerical and microcontroller simulations, and electronic circuit realisation of Minorsky’s equation</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals</source><creator>Gaël, Ngouabo Ulrich ; Samuel, Noubissie ; Bertrand, Fotsin Hilaire ; Paul, Woafo</creator><creatorcontrib>Gaël, Ngouabo Ulrich ; Samuel, Noubissie ; Bertrand, Fotsin Hilaire ; Paul, Woafo</creatorcontrib><description>This work deals with the mathematical analysis, numerical and microcontroller simulations and electronic circuit realisation of the dynamics of Minorsky’s equation. We consider the model including the nonlinear derivative feedback with delay. The study of stability is done by linearising the equation. An alternation between the zones of stability and instability as a function of the values of the delay is found. The bifurcation diagrams allowed us to validate the analytical predictions. These bifurcation diagrams show Hopf bifurcations and complex dynamics of the system. The analog and microcontroller simulations together with the experimental analysis were carried out in order to validate the theoretical analysis.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-019-1867-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Bifurcations ; Circuits ; Computer simulation ; Delay ; Electronic circuits ; Hopf bifurcation ; Mathematical analysis ; Microcontrollers ; Observations and Techniques ; Physics ; Physics and Astronomy ; Stability</subject><ispartof>Pramāṇa, 2020-12, Vol.94 (1), Article 12</ispartof><rights>Indian Academy of Sciences 2019</rights><rights>Indian Academy of Sciences 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2e316f0bb5f0f5b1d379ff575ada2ea0a3d0f26d883f7655b197e2d8a3a08a9c3</citedby><cites>FETCH-LOGICAL-c316t-2e316f0bb5f0f5b1d379ff575ada2ea0a3d0f26d883f7655b197e2d8a3a08a9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12043-019-1867-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12043-019-1867-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gaël, Ngouabo Ulrich</creatorcontrib><creatorcontrib>Samuel, Noubissie</creatorcontrib><creatorcontrib>Bertrand, Fotsin Hilaire</creatorcontrib><creatorcontrib>Paul, Woafo</creatorcontrib><title>Numerical and microcontroller simulations, and electronic circuit realisation of Minorsky’s equation</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>This work deals with the mathematical analysis, numerical and microcontroller simulations and electronic circuit realisation of the dynamics of Minorsky’s equation. We consider the model including the nonlinear derivative feedback with delay. The study of stability is done by linearising the equation. An alternation between the zones of stability and instability as a function of the values of the delay is found. The bifurcation diagrams allowed us to validate the analytical predictions. These bifurcation diagrams show Hopf bifurcations and complex dynamics of the system. The analog and microcontroller simulations together with the experimental analysis were carried out in order to validate the theoretical analysis.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Bifurcations</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Electronic circuits</subject><subject>Hopf bifurcation</subject><subject>Mathematical analysis</subject><subject>Microcontrollers</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqXwAGyWWDH4J46dEVX8SQUWmC3HsZFLErd2MnTjNXg9ngS3QWJiulc63zlX9wBwTvAVwVhcJ0JxwRAmFSKyFIgdgBmuBEOCEHKYd4YLVFBZHYOTlFY4gwXjM-Cex85Gb3QLdd_AzpsYTOiHGNrWRph8N7Z68KFPl3vAttZksfcGGh_N6AcYrW592kMwOPjk-xDTx_b78ytBuxn3wik4crpN9ux3zsHb3e3r4gEtX-4fFzdLZBgpB0RtHg7XNXfY8Zo0TFTOccF1o6nVWLMGO1o2UjInSp6JSljaSM00lroybA4uptx1DJvRpkGtwhj7fFJRRiUruZA0U2Si8rMpRevUOvpOx60iWO3qVFOdKrekdnUqlj108qTM9u82_iX_b_oBjoV7QA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gaël, Ngouabo Ulrich</creator><creator>Samuel, Noubissie</creator><creator>Bertrand, Fotsin Hilaire</creator><creator>Paul, Woafo</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Numerical and microcontroller simulations, and electronic circuit realisation of Minorsky’s equation</title><author>Gaël, Ngouabo Ulrich ; Samuel, Noubissie ; Bertrand, Fotsin Hilaire ; Paul, Woafo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2e316f0bb5f0f5b1d379ff575ada2ea0a3d0f26d883f7655b197e2d8a3a08a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Bifurcations</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Electronic circuits</topic><topic>Hopf bifurcation</topic><topic>Mathematical analysis</topic><topic>Microcontrollers</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaël, Ngouabo Ulrich</creatorcontrib><creatorcontrib>Samuel, Noubissie</creatorcontrib><creatorcontrib>Bertrand, Fotsin Hilaire</creatorcontrib><creatorcontrib>Paul, Woafo</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaël, Ngouabo Ulrich</au><au>Samuel, Noubissie</au><au>Bertrand, Fotsin Hilaire</au><au>Paul, Woafo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and microcontroller simulations, and electronic circuit realisation of Minorsky’s equation</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>94</volume><issue>1</issue><artnum>12</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>This work deals with the mathematical analysis, numerical and microcontroller simulations and electronic circuit realisation of the dynamics of Minorsky’s equation. We consider the model including the nonlinear derivative feedback with delay. The study of stability is done by linearising the equation. An alternation between the zones of stability and instability as a function of the values of the delay is found. The bifurcation diagrams allowed us to validate the analytical predictions. These bifurcation diagrams show Hopf bifurcations and complex dynamics of the system. The analog and microcontroller simulations together with the experimental analysis were carried out in order to validate the theoretical analysis.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-019-1867-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2020-12, Vol.94 (1), Article 12
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_2328365782
source Indian Academy of Sciences; SpringerLink Journals
subjects Astronomy
Astrophysics and Astroparticles
Bifurcations
Circuits
Computer simulation
Delay
Electronic circuits
Hopf bifurcation
Mathematical analysis
Microcontrollers
Observations and Techniques
Physics
Physics and Astronomy
Stability
title Numerical and microcontroller simulations, and electronic circuit realisation of Minorsky’s equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20microcontroller%20simulations,%20and%20electronic%20circuit%20realisation%20of%20Minorsky%E2%80%99s%20equation&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Ga%C3%ABl,%20Ngouabo%20Ulrich&rft.date=2020-12-01&rft.volume=94&rft.issue=1&rft.artnum=12&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-019-1867-3&rft_dat=%3Cproquest_cross%3E2328365782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328365782&rft_id=info:pmid/&rfr_iscdi=true