Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor

Binary metal oxides have great potential as electrode materials for supercapacitors. Three-dimensional flower-like nickel-cobalt oxide (NiCo2O4) nanostructures have been obtained by a simple and cost-effective hydrothermal synthesis followed by annealing at distinct temperatures. The effect of calci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-01, Vol.329, p.135084, Article 135084
Hauptverfasser: Siwatch, Poonam, Sharma, Kriti, Tripathi, S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 135084
container_title Electrochimica acta
container_volume 329
creator Siwatch, Poonam
Sharma, Kriti
Tripathi, S.K.
description Binary metal oxides have great potential as electrode materials for supercapacitors. Three-dimensional flower-like nickel-cobalt oxide (NiCo2O4) nanostructures have been obtained by a simple and cost-effective hydrothermal synthesis followed by annealing at distinct temperatures. The effect of calcination temperature, on the structure and the electrochemical behaviour of the nanostructures, has also been investigated. Highly porous, hollow and continuous structures of NiCo2O4 quantum dots (NCO-QDs), formed at the calcination temperature of 300 °C, delivered a specific capacitance of 362 F g−1 at a current density of 0.5 A g−1. The good electrochemical behaviour of these nanostructures may be related to their unique, highly porous, integrated nanostructures that provide a good electroactive surface for faradaic redox reactions to occur. Also, an asymmetric-supercapacitor with NCO-QDs as positive electrode and reduced graphene oxide (rGO) as negative electrode has been fabricated which exhibits a good charge storage capacity (81 F g−1 at the scan rate of 5 mV s−1) along with very good cycling stability (86% capacitance retention after 1000 cycles). The energy density and power density of the supercapacitor have been checked at a potential window of 2.5 V after 1000 charge-discharge cycles. The device has shown a very good energy density of 69.5 W h kg−1 along with high power density of 2.22 kW kg−1 at a current density of 1.5 A g −1. So, this study suggests that the prepared NCO-QDs are prospective candidates for fabricating supercapacitor electrodes with good electrochemical performance in an extended potential window.
doi_str_mv 10.1016/j.electacta.2019.135084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328306315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619319553</els_id><sourcerecordid>2328306315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-34cd8c2261dadc474a47810bb20a91b44579473a9b8cbec84d59eb8f1f7a5ffa3</originalsourceid><addsrcrecordid>eNqFkMFKxDAQhoMouK4-gwHPrUmTNulxWVwVFvei55CmE0zZNt0kFfbtrVS8CgNz-b9_mA-he0pySmj12OVwBJP0PHlBaJ1TVhLJL9CKSsEyJsv6Eq0IoSzjlayu0U2MHSFEVIKs0G6njTsCjuchfUJ0EXuL39zWFweOT5Me0tTj1qeIrQ9Yx3PfQwrO4DiNEIweZzz5cIuurD5GuPvda_Sxe3rfvmT7w_PrdrPPDJMkZYybVpqiqGirW8MF11xISpqmILqmDeelqLlgum6kacBI3pY1NNJSK3RprWZr9LD0jsGfJohJdX4Kw3xSFayQjFSMlnNKLCkTfIwBrBqD63U4K0rUjzTVqT9p6keaWqTN5GYhYX7iy0FQ0TgYDLQuzHnVevdvxze6QnnL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328306315</pqid></control><display><type>article</type><title>Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor</title><source>Access via ScienceDirect (Elsevier)</source><creator>Siwatch, Poonam ; Sharma, Kriti ; Tripathi, S.K.</creator><creatorcontrib>Siwatch, Poonam ; Sharma, Kriti ; Tripathi, S.K.</creatorcontrib><description>Binary metal oxides have great potential as electrode materials for supercapacitors. Three-dimensional flower-like nickel-cobalt oxide (NiCo2O4) nanostructures have been obtained by a simple and cost-effective hydrothermal synthesis followed by annealing at distinct temperatures. The effect of calcination temperature, on the structure and the electrochemical behaviour of the nanostructures, has also been investigated. Highly porous, hollow and continuous structures of NiCo2O4 quantum dots (NCO-QDs), formed at the calcination temperature of 300 °C, delivered a specific capacitance of 362 F g−1 at a current density of 0.5 A g−1. The good electrochemical behaviour of these nanostructures may be related to their unique, highly porous, integrated nanostructures that provide a good electroactive surface for faradaic redox reactions to occur. Also, an asymmetric-supercapacitor with NCO-QDs as positive electrode and reduced graphene oxide (rGO) as negative electrode has been fabricated which exhibits a good charge storage capacity (81 F g−1 at the scan rate of 5 mV s−1) along with very good cycling stability (86% capacitance retention after 1000 cycles). The energy density and power density of the supercapacitor have been checked at a potential window of 2.5 V after 1000 charge-discharge cycles. The device has shown a very good energy density of 69.5 W h kg−1 along with high power density of 2.22 kW kg−1 at a current density of 1.5 A g −1. So, this study suggests that the prepared NCO-QDs are prospective candidates for fabricating supercapacitor electrodes with good electrochemical performance in an extended potential window.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.135084</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymmetry ; Calcination temperature ; Capacitance ; Cobalt oxides ; Current density ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy density ; Flux density ; Graphene ; Hydrothermal ; Nanostructure ; Nickel compounds ; NiCo2O4 quantum dots ; Quantum dots ; Redox reactions ; Roasting ; Specific capacitance ; Storage capacity ; Supercapacitor ; Supercapacitors ; Synthesis ; Three dimensional flow</subject><ispartof>Electrochimica acta, 2020-01, Vol.329, p.135084, Article 135084</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-34cd8c2261dadc474a47810bb20a91b44579473a9b8cbec84d59eb8f1f7a5ffa3</citedby><cites>FETCH-LOGICAL-c380t-34cd8c2261dadc474a47810bb20a91b44579473a9b8cbec84d59eb8f1f7a5ffa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2019.135084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Siwatch, Poonam</creatorcontrib><creatorcontrib>Sharma, Kriti</creatorcontrib><creatorcontrib>Tripathi, S.K.</creatorcontrib><title>Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor</title><title>Electrochimica acta</title><description>Binary metal oxides have great potential as electrode materials for supercapacitors. Three-dimensional flower-like nickel-cobalt oxide (NiCo2O4) nanostructures have been obtained by a simple and cost-effective hydrothermal synthesis followed by annealing at distinct temperatures. The effect of calcination temperature, on the structure and the electrochemical behaviour of the nanostructures, has also been investigated. Highly porous, hollow and continuous structures of NiCo2O4 quantum dots (NCO-QDs), formed at the calcination temperature of 300 °C, delivered a specific capacitance of 362 F g−1 at a current density of 0.5 A g−1. The good electrochemical behaviour of these nanostructures may be related to their unique, highly porous, integrated nanostructures that provide a good electroactive surface for faradaic redox reactions to occur. Also, an asymmetric-supercapacitor with NCO-QDs as positive electrode and reduced graphene oxide (rGO) as negative electrode has been fabricated which exhibits a good charge storage capacity (81 F g−1 at the scan rate of 5 mV s−1) along with very good cycling stability (86% capacitance retention after 1000 cycles). The energy density and power density of the supercapacitor have been checked at a potential window of 2.5 V after 1000 charge-discharge cycles. The device has shown a very good energy density of 69.5 W h kg−1 along with high power density of 2.22 kW kg−1 at a current density of 1.5 A g −1. So, this study suggests that the prepared NCO-QDs are prospective candidates for fabricating supercapacitor electrodes with good electrochemical performance in an extended potential window.</description><subject>Asymmetry</subject><subject>Calcination temperature</subject><subject>Capacitance</subject><subject>Cobalt oxides</subject><subject>Current density</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy density</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Hydrothermal</subject><subject>Nanostructure</subject><subject>Nickel compounds</subject><subject>NiCo2O4 quantum dots</subject><subject>Quantum dots</subject><subject>Redox reactions</subject><subject>Roasting</subject><subject>Specific capacitance</subject><subject>Storage capacity</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Three dimensional flow</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKxDAQhoMouK4-gwHPrUmTNulxWVwVFvei55CmE0zZNt0kFfbtrVS8CgNz-b9_mA-he0pySmj12OVwBJP0PHlBaJ1TVhLJL9CKSsEyJsv6Eq0IoSzjlayu0U2MHSFEVIKs0G6njTsCjuchfUJ0EXuL39zWFweOT5Me0tTj1qeIrQ9Yx3PfQwrO4DiNEIweZzz5cIuurD5GuPvda_Sxe3rfvmT7w_PrdrPPDJMkZYybVpqiqGirW8MF11xISpqmILqmDeelqLlgum6kacBI3pY1NNJSK3RprWZr9LD0jsGfJohJdX4Kw3xSFayQjFSMlnNKLCkTfIwBrBqD63U4K0rUjzTVqT9p6keaWqTN5GYhYX7iy0FQ0TgYDLQuzHnVevdvxze6QnnL</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Siwatch, Poonam</creator><creator>Sharma, Kriti</creator><creator>Tripathi, S.K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200101</creationdate><title>Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor</title><author>Siwatch, Poonam ; Sharma, Kriti ; Tripathi, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-34cd8c2261dadc474a47810bb20a91b44579473a9b8cbec84d59eb8f1f7a5ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Calcination temperature</topic><topic>Capacitance</topic><topic>Cobalt oxides</topic><topic>Current density</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy density</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Hydrothermal</topic><topic>Nanostructure</topic><topic>Nickel compounds</topic><topic>NiCo2O4 quantum dots</topic><topic>Quantum dots</topic><topic>Redox reactions</topic><topic>Roasting</topic><topic>Specific capacitance</topic><topic>Storage capacity</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siwatch, Poonam</creatorcontrib><creatorcontrib>Sharma, Kriti</creatorcontrib><creatorcontrib>Tripathi, S.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siwatch, Poonam</au><au>Sharma, Kriti</au><au>Tripathi, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor</atitle><jtitle>Electrochimica acta</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>329</volume><spage>135084</spage><pages>135084-</pages><artnum>135084</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Binary metal oxides have great potential as electrode materials for supercapacitors. Three-dimensional flower-like nickel-cobalt oxide (NiCo2O4) nanostructures have been obtained by a simple and cost-effective hydrothermal synthesis followed by annealing at distinct temperatures. The effect of calcination temperature, on the structure and the electrochemical behaviour of the nanostructures, has also been investigated. Highly porous, hollow and continuous structures of NiCo2O4 quantum dots (NCO-QDs), formed at the calcination temperature of 300 °C, delivered a specific capacitance of 362 F g−1 at a current density of 0.5 A g−1. The good electrochemical behaviour of these nanostructures may be related to their unique, highly porous, integrated nanostructures that provide a good electroactive surface for faradaic redox reactions to occur. Also, an asymmetric-supercapacitor with NCO-QDs as positive electrode and reduced graphene oxide (rGO) as negative electrode has been fabricated which exhibits a good charge storage capacity (81 F g−1 at the scan rate of 5 mV s−1) along with very good cycling stability (86% capacitance retention after 1000 cycles). The energy density and power density of the supercapacitor have been checked at a potential window of 2.5 V after 1000 charge-discharge cycles. The device has shown a very good energy density of 69.5 W h kg−1 along with high power density of 2.22 kW kg−1 at a current density of 1.5 A g −1. So, this study suggests that the prepared NCO-QDs are prospective candidates for fabricating supercapacitor electrodes with good electrochemical performance in an extended potential window.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.135084</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-01, Vol.329, p.135084, Article 135084
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2328306315
source Access via ScienceDirect (Elsevier)
subjects Asymmetry
Calcination temperature
Capacitance
Cobalt oxides
Current density
Electrochemical analysis
Electrode materials
Electrodes
Energy density
Flux density
Graphene
Hydrothermal
Nanostructure
Nickel compounds
NiCo2O4 quantum dots
Quantum dots
Redox reactions
Roasting
Specific capacitance
Storage capacity
Supercapacitor
Supercapacitors
Synthesis
Three dimensional flow
title Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20synthesis%20of%20NiCo2O4%20quantum%20dots%20for%20asymmetric%20supercapacitor&rft.jtitle=Electrochimica%20acta&rft.au=Siwatch,%20Poonam&rft.date=2020-01-01&rft.volume=329&rft.spage=135084&rft.pages=135084-&rft.artnum=135084&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.135084&rft_dat=%3Cproquest_cross%3E2328306315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328306315&rft_id=info:pmid/&rft_els_id=S0013468619319553&rfr_iscdi=true