Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type

In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical modelling 2020-01, Vol.33 (1), p.n/a
Hauptverfasser: Samadyar, Nasrin, Mirzaee, Farshid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title International journal of numerical modelling
container_volume 33
creator Samadyar, Nasrin
Mirzaee, Farshid
description In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.
doi_str_mv 10.1002/jnm.2688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328265159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328265159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EEqUgsQRLTJik-JPEzrAgPkWFToBp5KRO68qJU9sBZYDEElgMO2AnrAS3ZcroSVdH5z5dAE4xGmGEyMWqqUck5XwPDDDKsggTFO-DAeJZHFHK0CE4cm6FEKI4IQPwPrN-aRpja6HhpbSN6bRWsDW6b0ythHawNFqbUnhlGija1hpRLmFlLHRGv6pmAZ035VI4r0o48d9fPx-fL0Z7aa2AqvFyYYNarrutwUFTwXEhNfR9K4_BQRUq5MnfHYLnm-unq7toOrudXI2nUUkyyqOiokwwURUJSRMep8WcSoZiXvAQx1lGmKwwSwUuUYFYks0pxqyoEhILyllM6BCc7bzh-3Unnc9XprNNqMwJJTxYcZIF6nxHldY4Z2WVt1bVwvY5Rvlm3DyMm2_GDWi0Q9-Ulv2_XH7_-LDlfwHvBn7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328265159</pqid></control><display><type>article</type><title>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Samadyar, Nasrin ; Mirzaee, Farshid</creator><creatorcontrib>Samadyar, Nasrin ; Mirzaee, Farshid</creatorcontrib><description>In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.2688</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algebra ; Bernoulli polynomials ; collocation method ; Collocation methods ; Error analysis ; Gram‐Schmidt process ; Integral equations ; Mathematical analysis ; Numerical methods ; Polynomials ; singular integral equations ; stochastic Itô‐Volterra integral equations ; Volterra integral equations</subject><ispartof>International journal of numerical modelling, 2020-01, Vol.33 (1), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</citedby><cites>FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</cites><orcidid>0000-0001-8556-8508 ; 0000-0002-1429-2548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.2688$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.2688$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Samadyar, Nasrin</creatorcontrib><creatorcontrib>Mirzaee, Farshid</creatorcontrib><title>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</title><title>International journal of numerical modelling</title><description>In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.</description><subject>Algebra</subject><subject>Bernoulli polynomials</subject><subject>collocation method</subject><subject>Collocation methods</subject><subject>Error analysis</subject><subject>Gram‐Schmidt process</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Polynomials</subject><subject>singular integral equations</subject><subject>stochastic Itô‐Volterra integral equations</subject><subject>Volterra integral equations</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAURS0EEqUgsQRLTJik-JPEzrAgPkWFToBp5KRO68qJU9sBZYDEElgMO2AnrAS3ZcroSVdH5z5dAE4xGmGEyMWqqUck5XwPDDDKsggTFO-DAeJZHFHK0CE4cm6FEKI4IQPwPrN-aRpja6HhpbSN6bRWsDW6b0ythHawNFqbUnhlGija1hpRLmFlLHRGv6pmAZ035VI4r0o48d9fPx-fL0Z7aa2AqvFyYYNarrutwUFTwXEhNfR9K4_BQRUq5MnfHYLnm-unq7toOrudXI2nUUkyyqOiokwwURUJSRMep8WcSoZiXvAQx1lGmKwwSwUuUYFYks0pxqyoEhILyllM6BCc7bzh-3Unnc9XprNNqMwJJTxYcZIF6nxHldY4Z2WVt1bVwvY5Rvlm3DyMm2_GDWi0Q9-Ulv2_XH7_-LDlfwHvBn7Y</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Samadyar, Nasrin</creator><creator>Mirzaee, Farshid</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8556-8508</orcidid><orcidid>https://orcid.org/0000-0002-1429-2548</orcidid></search><sort><creationdate>202001</creationdate><title>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</title><author>Samadyar, Nasrin ; Mirzaee, Farshid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Bernoulli polynomials</topic><topic>collocation method</topic><topic>Collocation methods</topic><topic>Error analysis</topic><topic>Gram‐Schmidt process</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Polynomials</topic><topic>singular integral equations</topic><topic>stochastic Itô‐Volterra integral equations</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samadyar, Nasrin</creatorcontrib><creatorcontrib>Mirzaee, Farshid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samadyar, Nasrin</au><au>Mirzaee, Farshid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</atitle><jtitle>International journal of numerical modelling</jtitle><date>2020-01</date><risdate>2020</risdate><volume>33</volume><issue>1</issue><epage>n/a</epage><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jnm.2688</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8556-8508</orcidid><orcidid>https://orcid.org/0000-0002-1429-2548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-3370
ispartof International journal of numerical modelling, 2020-01, Vol.33 (1), p.n/a
issn 0894-3370
1099-1204
language eng
recordid cdi_proquest_journals_2328265159
source Wiley Online Library Journals Frontfile Complete
subjects Algebra
Bernoulli polynomials
collocation method
Collocation methods
Error analysis
Gram‐Schmidt process
Integral equations
Mathematical analysis
Numerical methods
Polynomials
singular integral equations
stochastic Itô‐Volterra integral equations
Volterra integral equations
title Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthonormal%20Bernoulli%20polynomials%20collocation%20approach%20for%20solving%20stochastic%20It%C3%B4%E2%80%90Volterra%20integral%20equations%20of%20Abel%20type&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Samadyar,%20Nasrin&rft.date=2020-01&rft.volume=33&rft.issue=1&rft.epage=n/a&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.2688&rft_dat=%3Cproquest_cross%3E2328265159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328265159&rft_id=info:pmid/&rfr_iscdi=true