Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type
In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is a...
Gespeichert in:
Veröffentlicht in: | International journal of numerical modelling 2020-01, Vol.33 (1), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of numerical modelling |
container_volume | 33 |
creator | Samadyar, Nasrin Mirzaee, Farshid |
description | In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method. |
doi_str_mv | 10.1002/jnm.2688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328265159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328265159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EEqUgsQRLTJik-JPEzrAgPkWFToBp5KRO68qJU9sBZYDEElgMO2AnrAS3ZcroSVdH5z5dAE4xGmGEyMWqqUck5XwPDDDKsggTFO-DAeJZHFHK0CE4cm6FEKI4IQPwPrN-aRpja6HhpbSN6bRWsDW6b0ythHawNFqbUnhlGija1hpRLmFlLHRGv6pmAZ035VI4r0o48d9fPx-fL0Z7aa2AqvFyYYNarrutwUFTwXEhNfR9K4_BQRUq5MnfHYLnm-unq7toOrudXI2nUUkyyqOiokwwURUJSRMep8WcSoZiXvAQx1lGmKwwSwUuUYFYks0pxqyoEhILyllM6BCc7bzh-3Unnc9XprNNqMwJJTxYcZIF6nxHldY4Z2WVt1bVwvY5Rvlm3DyMm2_GDWi0Q9-Ulv2_XH7_-LDlfwHvBn7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328265159</pqid></control><display><type>article</type><title>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Samadyar, Nasrin ; Mirzaee, Farshid</creator><creatorcontrib>Samadyar, Nasrin ; Mirzaee, Farshid</creatorcontrib><description>In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.2688</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algebra ; Bernoulli polynomials ; collocation method ; Collocation methods ; Error analysis ; Gram‐Schmidt process ; Integral equations ; Mathematical analysis ; Numerical methods ; Polynomials ; singular integral equations ; stochastic Itô‐Volterra integral equations ; Volterra integral equations</subject><ispartof>International journal of numerical modelling, 2020-01, Vol.33 (1), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</citedby><cites>FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</cites><orcidid>0000-0001-8556-8508 ; 0000-0002-1429-2548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.2688$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.2688$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Samadyar, Nasrin</creatorcontrib><creatorcontrib>Mirzaee, Farshid</creatorcontrib><title>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</title><title>International journal of numerical modelling</title><description>In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.</description><subject>Algebra</subject><subject>Bernoulli polynomials</subject><subject>collocation method</subject><subject>Collocation methods</subject><subject>Error analysis</subject><subject>Gram‐Schmidt process</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Polynomials</subject><subject>singular integral equations</subject><subject>stochastic Itô‐Volterra integral equations</subject><subject>Volterra integral equations</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAURS0EEqUgsQRLTJik-JPEzrAgPkWFToBp5KRO68qJU9sBZYDEElgMO2AnrAS3ZcroSVdH5z5dAE4xGmGEyMWqqUck5XwPDDDKsggTFO-DAeJZHFHK0CE4cm6FEKI4IQPwPrN-aRpja6HhpbSN6bRWsDW6b0ythHawNFqbUnhlGija1hpRLmFlLHRGv6pmAZ035VI4r0o48d9fPx-fL0Z7aa2AqvFyYYNarrutwUFTwXEhNfR9K4_BQRUq5MnfHYLnm-unq7toOrudXI2nUUkyyqOiokwwURUJSRMep8WcSoZiXvAQx1lGmKwwSwUuUYFYks0pxqyoEhILyllM6BCc7bzh-3Unnc9XprNNqMwJJTxYcZIF6nxHldY4Z2WVt1bVwvY5Rvlm3DyMm2_GDWi0Q9-Ulv2_XH7_-LDlfwHvBn7Y</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Samadyar, Nasrin</creator><creator>Mirzaee, Farshid</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8556-8508</orcidid><orcidid>https://orcid.org/0000-0002-1429-2548</orcidid></search><sort><creationdate>202001</creationdate><title>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</title><author>Samadyar, Nasrin ; Mirzaee, Farshid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-bf37a7afb5265846bd3e7048b87a749927ef176a1c0b0759d3117bf524a387423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Bernoulli polynomials</topic><topic>collocation method</topic><topic>Collocation methods</topic><topic>Error analysis</topic><topic>Gram‐Schmidt process</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Polynomials</topic><topic>singular integral equations</topic><topic>stochastic Itô‐Volterra integral equations</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samadyar, Nasrin</creatorcontrib><creatorcontrib>Mirzaee, Farshid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samadyar, Nasrin</au><au>Mirzaee, Farshid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type</atitle><jtitle>International journal of numerical modelling</jtitle><date>2020-01</date><risdate>2020</risdate><volume>33</volume><issue>1</issue><epage>n/a</epage><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations. By applying this method, linear stochastic integral equation converts to linear system of algebraic equations. This system is achieved by approximating functions that appear in the stochastic integral equations by using orthonormal Bernoulli polynomials (OBPs) and then substituting these approximations into consideration equation. This linear system of algebraic equations can be solved via an appropriate numerical method and approximate solution of integral equation is obtained. A main advantage of this technique is that the condition number of the coefficient matrix of the system is small, which verify that THE proposed method is stable. Also, convergence and error analysis of the present method are discussed. Finally, two examples are given to show the pertinent properties, applicability, and accuracy of the present method.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jnm.2688</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8556-8508</orcidid><orcidid>https://orcid.org/0000-0002-1429-2548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3370 |
ispartof | International journal of numerical modelling, 2020-01, Vol.33 (1), p.n/a |
issn | 0894-3370 1099-1204 |
language | eng |
recordid | cdi_proquest_journals_2328265159 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algebra Bernoulli polynomials collocation method Collocation methods Error analysis Gram‐Schmidt process Integral equations Mathematical analysis Numerical methods Polynomials singular integral equations stochastic Itô‐Volterra integral equations Volterra integral equations |
title | Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthonormal%20Bernoulli%20polynomials%20collocation%20approach%20for%20solving%20stochastic%20It%C3%B4%E2%80%90Volterra%20integral%20equations%20of%20Abel%20type&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Samadyar,%20Nasrin&rft.date=2020-01&rft.volume=33&rft.issue=1&rft.epage=n/a&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.2688&rft_dat=%3Cproquest_cross%3E2328265159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328265159&rft_id=info:pmid/&rfr_iscdi=true |