Dim the Lights! -- Low-Rank Prior Temporal Data for Specular-Free Video Recovery

The appearance of an object is significantly affected by the illumination conditions in the environment. This is more evident with strong reflective objects as they suffer from more dominant specular reflections, causing information loss and discontinuity in the image domain. In this paper, we prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Alsaleh, Samar M, Aviles-Rivero, Angelica I, Debroux, Noemie, Hahn, James K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alsaleh, Samar M
Aviles-Rivero, Angelica I
Debroux, Noemie
Hahn, James K
description The appearance of an object is significantly affected by the illumination conditions in the environment. This is more evident with strong reflective objects as they suffer from more dominant specular reflections, causing information loss and discontinuity in the image domain. In this paper, we present a novel framework for specular-free video recovery with special emphasis on dealing with complex motions coming from objects or camera. Our solution is a twostep approach that allows for both detection and restoration of the damaged regions on video data. We first propose a spatially adaptive detection term that searches for the damage areas. We then introduce a variational solution for specular-free video recovery that allows exploiting spatio-temporal correlations by representing prior data in a low-rank form. We demonstrate that our solution prevents major drawbacks of existing approaches while improving the performance in both detection accuracy and inpainting quality. Finally, we show that our approach can be applied to other problems such as object removal.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2328199345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328199345</sourcerecordid><originalsourceid>FETCH-proquest_journals_23281993453</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNF5QXe19JxJBw9i0lUWe-aaurarRX-fhz6g08DMLIjFOHdp4DG2IrYxjeM4bH9gvs8tkkayg7FGSOS9Hs0WKIVEvWkm-gekWioNOXaD0qKFSIwCqtlcBiynVmgaa0S4yhsqyLBUL9SfDVlWojVo_7gmu_iUH8900Oo5oRmLRk26n1PBOAvcMOSez_-7vjbxPQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328199345</pqid></control><display><type>article</type><title>Dim the Lights! -- Low-Rank Prior Temporal Data for Specular-Free Video Recovery</title><source>Free E- Journals</source><creator>Alsaleh, Samar M ; Aviles-Rivero, Angelica I ; Debroux, Noemie ; Hahn, James K</creator><creatorcontrib>Alsaleh, Samar M ; Aviles-Rivero, Angelica I ; Debroux, Noemie ; Hahn, James K</creatorcontrib><description>The appearance of an object is significantly affected by the illumination conditions in the environment. This is more evident with strong reflective objects as they suffer from more dominant specular reflections, causing information loss and discontinuity in the image domain. In this paper, we present a novel framework for specular-free video recovery with special emphasis on dealing with complex motions coming from objects or camera. Our solution is a twostep approach that allows for both detection and restoration of the damaged regions on video data. We first propose a spatially adaptive detection term that searches for the damage areas. We then introduce a variational solution for specular-free video recovery that allows exploiting spatio-temporal correlations by representing prior data in a low-rank form. We demonstrate that our solution prevents major drawbacks of existing approaches while improving the performance in both detection accuracy and inpainting quality. Finally, we show that our approach can be applied to other problems such as object removal.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damage ; Restoration ; Video data</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alsaleh, Samar M</creatorcontrib><creatorcontrib>Aviles-Rivero, Angelica I</creatorcontrib><creatorcontrib>Debroux, Noemie</creatorcontrib><creatorcontrib>Hahn, James K</creatorcontrib><title>Dim the Lights! -- Low-Rank Prior Temporal Data for Specular-Free Video Recovery</title><title>arXiv.org</title><description>The appearance of an object is significantly affected by the illumination conditions in the environment. This is more evident with strong reflective objects as they suffer from more dominant specular reflections, causing information loss and discontinuity in the image domain. In this paper, we present a novel framework for specular-free video recovery with special emphasis on dealing with complex motions coming from objects or camera. Our solution is a twostep approach that allows for both detection and restoration of the damaged regions on video data. We first propose a spatially adaptive detection term that searches for the damage areas. We then introduce a variational solution for specular-free video recovery that allows exploiting spatio-temporal correlations by representing prior data in a low-rank form. We demonstrate that our solution prevents major drawbacks of existing approaches while improving the performance in both detection accuracy and inpainting quality. Finally, we show that our approach can be applied to other problems such as object removal.</description><subject>Damage</subject><subject>Restoration</subject><subject>Video data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNF5QXe19JxJBw9i0lUWe-aaurarRX-fhz6g08DMLIjFOHdp4DG2IrYxjeM4bH9gvs8tkkayg7FGSOS9Hs0WKIVEvWkm-gekWioNOXaD0qKFSIwCqtlcBiynVmgaa0S4yhsqyLBUL9SfDVlWojVo_7gmu_iUH8900Oo5oRmLRk26n1PBOAvcMOSez_-7vjbxPQI</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Alsaleh, Samar M</creator><creator>Aviles-Rivero, Angelica I</creator><creator>Debroux, Noemie</creator><creator>Hahn, James K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191217</creationdate><title>Dim the Lights! -- Low-Rank Prior Temporal Data for Specular-Free Video Recovery</title><author>Alsaleh, Samar M ; Aviles-Rivero, Angelica I ; Debroux, Noemie ; Hahn, James K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23281993453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Damage</topic><topic>Restoration</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Alsaleh, Samar M</creatorcontrib><creatorcontrib>Aviles-Rivero, Angelica I</creatorcontrib><creatorcontrib>Debroux, Noemie</creatorcontrib><creatorcontrib>Hahn, James K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsaleh, Samar M</au><au>Aviles-Rivero, Angelica I</au><au>Debroux, Noemie</au><au>Hahn, James K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dim the Lights! -- Low-Rank Prior Temporal Data for Specular-Free Video Recovery</atitle><jtitle>arXiv.org</jtitle><date>2019-12-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The appearance of an object is significantly affected by the illumination conditions in the environment. This is more evident with strong reflective objects as they suffer from more dominant specular reflections, causing information loss and discontinuity in the image domain. In this paper, we present a novel framework for specular-free video recovery with special emphasis on dealing with complex motions coming from objects or camera. Our solution is a twostep approach that allows for both detection and restoration of the damaged regions on video data. We first propose a spatially adaptive detection term that searches for the damage areas. We then introduce a variational solution for specular-free video recovery that allows exploiting spatio-temporal correlations by representing prior data in a low-rank form. We demonstrate that our solution prevents major drawbacks of existing approaches while improving the performance in both detection accuracy and inpainting quality. Finally, we show that our approach can be applied to other problems such as object removal.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2328199345
source Free E- Journals
subjects Damage
Restoration
Video data
title Dim the Lights! -- Low-Rank Prior Temporal Data for Specular-Free Video Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dim%20the%20Lights!%20--%20Low-Rank%20Prior%20Temporal%20Data%20for%20Specular-Free%20Video%20Recovery&rft.jtitle=arXiv.org&rft.au=Alsaleh,%20Samar%20M&rft.date=2019-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2328199345%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328199345&rft_id=info:pmid/&rfr_iscdi=true