Comparison of HTP catalyst performance for different internal monolith structures

A new technology for the manufacturing of 3D-printed ceramic catalyst support structures enables further optimisation of the catalyst, including the size and the internal geometry. An important design consideration for catalysts used in monopropellant thrusters is the size for a given design thrust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-11, Vol.164, p.106-111
Hauptverfasser: Koopmans, Robert-Jan, Nandyala, Varun Reddy, Pavesi, Sara, Batonneau, Yann, Beauchet, Romain, Maleix, Corentin, Schwentenwein, Martin, Spitzbart, Manfred, Altun, Altan Alpay, Scharlemann, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 106
container_title Acta astronautica
container_volume 164
creator Koopmans, Robert-Jan
Nandyala, Varun Reddy
Pavesi, Sara
Batonneau, Yann
Beauchet, Romain
Maleix, Corentin
Schwentenwein, Martin
Spitzbart, Manfred
Altun, Altan Alpay
Scharlemann, Carsten
description A new technology for the manufacturing of 3D-printed ceramic catalyst support structures enables further optimisation of the catalyst, including the size and the internal geometry. An important design consideration for catalysts used in monopropellant thrusters is the size for a given design thrust level. A too small size may lead to only a partly decomposition of the incoming propellant. A too large size may lead to unnecessary heat loss to the environment and an excessive pressure drop. Both cases will result in a reduced performance. In the current investigation, four catalyst designs were subjected to a range of mass flow rates, thereby varying the average residence time in the chamber. It was found that shorter residence times lead to higher average chamber temperatures. This suggests that the catalyst is too large. Although the results for each internal design cannot be compared directly to each other, the convex tetrahedron design seems to be slightly better. •Catalyst support structures can be printed in different geometries.•Residence time insensitive to Re number and void fraction.•Maximum temperature design dependent, but insensitive to Re number and void fraction.
doi_str_mv 10.1016/j.actaastro.2019.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327894185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576519303376</els_id><sourcerecordid>2327894185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f32c6485fb907fb43690b3f6f7baa2a4814659c6ffd40bd290ef7e0eab8d95413</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BgOeWydp2jTHZVFXWFBhPYc0TTClbWqSCv57u6x49TRzeO_NvA-hWwI5AVLdd7nSSamYgs8pEJEDz4HAGVqRmouMQgHnaAUgWFbyqrxEVzF2AMBpLVbobeuHSQUX_Yi9xbvDK9Yqqf47JjyZYH0Y1KgNXhbcOmtNMGPCbkwmjKrHgx9979IHXs7POs3BxGt0YVUfzc3vXKP3x4fDdpftX56et5t9pgtWpMwWVFesLm0jgNuGFZWAprCV5Y1SVLGasKoUurK2ZdC0VICx3IBRTd2KkpFije5OuVPwn7OJSXZ-Pj4VJS0orwUjdbmo-Emlg48xGCun4AYVviUBeeQnO_nHTx75SeBy4bc4NyenWUp8ORNk1M4sLFoXjE6y9e7fjB_min8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327894185</pqid></control><display><type>article</type><title>Comparison of HTP catalyst performance for different internal monolith structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Koopmans, Robert-Jan ; Nandyala, Varun Reddy ; Pavesi, Sara ; Batonneau, Yann ; Beauchet, Romain ; Maleix, Corentin ; Schwentenwein, Martin ; Spitzbart, Manfred ; Altun, Altan Alpay ; Scharlemann, Carsten</creator><creatorcontrib>Koopmans, Robert-Jan ; Nandyala, Varun Reddy ; Pavesi, Sara ; Batonneau, Yann ; Beauchet, Romain ; Maleix, Corentin ; Schwentenwein, Martin ; Spitzbart, Manfred ; Altun, Altan Alpay ; Scharlemann, Carsten</creatorcontrib><description>A new technology for the manufacturing of 3D-printed ceramic catalyst support structures enables further optimisation of the catalyst, including the size and the internal geometry. An important design consideration for catalysts used in monopropellant thrusters is the size for a given design thrust level. A too small size may lead to only a partly decomposition of the incoming propellant. A too large size may lead to unnecessary heat loss to the environment and an excessive pressure drop. Both cases will result in a reduced performance. In the current investigation, four catalyst designs were subjected to a range of mass flow rates, thereby varying the average residence time in the chamber. It was found that shorter residence times lead to higher average chamber temperatures. This suggests that the catalyst is too large. Although the results for each internal design cannot be compared directly to each other, the convex tetrahedron design seems to be slightly better. •Catalyst support structures can be printed in different geometries.•Residence time insensitive to Re number and void fraction.•Maximum temperature design dependent, but insensitive to Re number and void fraction.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.07.010</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>3D-printed ceramic support structure ; Catalyst sizing ; Catalysts ; Design ; Flow rates ; Green propellant ; Heat loss ; Hydrogen peroxide ; Mass flow rate ; New technology ; Optimization ; Pressure drop ; Tetrahedra ; Three dimensional printing ; Thrusters</subject><ispartof>Acta astronautica, 2019-11, Vol.164, p.106-111</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f32c6485fb907fb43690b3f6f7baa2a4814659c6ffd40bd290ef7e0eab8d95413</citedby><cites>FETCH-LOGICAL-c343t-f32c6485fb907fb43690b3f6f7baa2a4814659c6ffd40bd290ef7e0eab8d95413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2019.07.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Koopmans, Robert-Jan</creatorcontrib><creatorcontrib>Nandyala, Varun Reddy</creatorcontrib><creatorcontrib>Pavesi, Sara</creatorcontrib><creatorcontrib>Batonneau, Yann</creatorcontrib><creatorcontrib>Beauchet, Romain</creatorcontrib><creatorcontrib>Maleix, Corentin</creatorcontrib><creatorcontrib>Schwentenwein, Martin</creatorcontrib><creatorcontrib>Spitzbart, Manfred</creatorcontrib><creatorcontrib>Altun, Altan Alpay</creatorcontrib><creatorcontrib>Scharlemann, Carsten</creatorcontrib><title>Comparison of HTP catalyst performance for different internal monolith structures</title><title>Acta astronautica</title><description>A new technology for the manufacturing of 3D-printed ceramic catalyst support structures enables further optimisation of the catalyst, including the size and the internal geometry. An important design consideration for catalysts used in monopropellant thrusters is the size for a given design thrust level. A too small size may lead to only a partly decomposition of the incoming propellant. A too large size may lead to unnecessary heat loss to the environment and an excessive pressure drop. Both cases will result in a reduced performance. In the current investigation, four catalyst designs were subjected to a range of mass flow rates, thereby varying the average residence time in the chamber. It was found that shorter residence times lead to higher average chamber temperatures. This suggests that the catalyst is too large. Although the results for each internal design cannot be compared directly to each other, the convex tetrahedron design seems to be slightly better. •Catalyst support structures can be printed in different geometries.•Residence time insensitive to Re number and void fraction.•Maximum temperature design dependent, but insensitive to Re number and void fraction.</description><subject>3D-printed ceramic support structure</subject><subject>Catalyst sizing</subject><subject>Catalysts</subject><subject>Design</subject><subject>Flow rates</subject><subject>Green propellant</subject><subject>Heat loss</subject><subject>Hydrogen peroxide</subject><subject>Mass flow rate</subject><subject>New technology</subject><subject>Optimization</subject><subject>Pressure drop</subject><subject>Tetrahedra</subject><subject>Three dimensional printing</subject><subject>Thrusters</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BgOeWydp2jTHZVFXWFBhPYc0TTClbWqSCv57u6x49TRzeO_NvA-hWwI5AVLdd7nSSamYgs8pEJEDz4HAGVqRmouMQgHnaAUgWFbyqrxEVzF2AMBpLVbobeuHSQUX_Yi9xbvDK9Yqqf47JjyZYH0Y1KgNXhbcOmtNMGPCbkwmjKrHgx9979IHXs7POs3BxGt0YVUfzc3vXKP3x4fDdpftX56et5t9pgtWpMwWVFesLm0jgNuGFZWAprCV5Y1SVLGasKoUurK2ZdC0VICx3IBRTd2KkpFije5OuVPwn7OJSXZ-Pj4VJS0orwUjdbmo-Emlg48xGCun4AYVviUBeeQnO_nHTx75SeBy4bc4NyenWUp8ORNk1M4sLFoXjE6y9e7fjB_min8U</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Koopmans, Robert-Jan</creator><creator>Nandyala, Varun Reddy</creator><creator>Pavesi, Sara</creator><creator>Batonneau, Yann</creator><creator>Beauchet, Romain</creator><creator>Maleix, Corentin</creator><creator>Schwentenwein, Martin</creator><creator>Spitzbart, Manfred</creator><creator>Altun, Altan Alpay</creator><creator>Scharlemann, Carsten</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201911</creationdate><title>Comparison of HTP catalyst performance for different internal monolith structures</title><author>Koopmans, Robert-Jan ; Nandyala, Varun Reddy ; Pavesi, Sara ; Batonneau, Yann ; Beauchet, Romain ; Maleix, Corentin ; Schwentenwein, Martin ; Spitzbart, Manfred ; Altun, Altan Alpay ; Scharlemann, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f32c6485fb907fb43690b3f6f7baa2a4814659c6ffd40bd290ef7e0eab8d95413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D-printed ceramic support structure</topic><topic>Catalyst sizing</topic><topic>Catalysts</topic><topic>Design</topic><topic>Flow rates</topic><topic>Green propellant</topic><topic>Heat loss</topic><topic>Hydrogen peroxide</topic><topic>Mass flow rate</topic><topic>New technology</topic><topic>Optimization</topic><topic>Pressure drop</topic><topic>Tetrahedra</topic><topic>Three dimensional printing</topic><topic>Thrusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koopmans, Robert-Jan</creatorcontrib><creatorcontrib>Nandyala, Varun Reddy</creatorcontrib><creatorcontrib>Pavesi, Sara</creatorcontrib><creatorcontrib>Batonneau, Yann</creatorcontrib><creatorcontrib>Beauchet, Romain</creatorcontrib><creatorcontrib>Maleix, Corentin</creatorcontrib><creatorcontrib>Schwentenwein, Martin</creatorcontrib><creatorcontrib>Spitzbart, Manfred</creatorcontrib><creatorcontrib>Altun, Altan Alpay</creatorcontrib><creatorcontrib>Scharlemann, Carsten</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koopmans, Robert-Jan</au><au>Nandyala, Varun Reddy</au><au>Pavesi, Sara</au><au>Batonneau, Yann</au><au>Beauchet, Romain</au><au>Maleix, Corentin</au><au>Schwentenwein, Martin</au><au>Spitzbart, Manfred</au><au>Altun, Altan Alpay</au><au>Scharlemann, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of HTP catalyst performance for different internal monolith structures</atitle><jtitle>Acta astronautica</jtitle><date>2019-11</date><risdate>2019</risdate><volume>164</volume><spage>106</spage><epage>111</epage><pages>106-111</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>A new technology for the manufacturing of 3D-printed ceramic catalyst support structures enables further optimisation of the catalyst, including the size and the internal geometry. An important design consideration for catalysts used in monopropellant thrusters is the size for a given design thrust level. A too small size may lead to only a partly decomposition of the incoming propellant. A too large size may lead to unnecessary heat loss to the environment and an excessive pressure drop. Both cases will result in a reduced performance. In the current investigation, four catalyst designs were subjected to a range of mass flow rates, thereby varying the average residence time in the chamber. It was found that shorter residence times lead to higher average chamber temperatures. This suggests that the catalyst is too large. Although the results for each internal design cannot be compared directly to each other, the convex tetrahedron design seems to be slightly better. •Catalyst support structures can be printed in different geometries.•Residence time insensitive to Re number and void fraction.•Maximum temperature design dependent, but insensitive to Re number and void fraction.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.07.010</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-11, Vol.164, p.106-111
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2327894185
source Elsevier ScienceDirect Journals Complete
subjects 3D-printed ceramic support structure
Catalyst sizing
Catalysts
Design
Flow rates
Green propellant
Heat loss
Hydrogen peroxide
Mass flow rate
New technology
Optimization
Pressure drop
Tetrahedra
Three dimensional printing
Thrusters
title Comparison of HTP catalyst performance for different internal monolith structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20HTP%20catalyst%20performance%20for%20different%20internal%20monolith%20structures&rft.jtitle=Acta%20astronautica&rft.au=Koopmans,%20Robert-Jan&rft.date=2019-11&rft.volume=164&rft.spage=106&rft.epage=111&rft.pages=106-111&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.07.010&rft_dat=%3Cproquest_cross%3E2327894185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327894185&rft_id=info:pmid/&rft_els_id=S0094576519303376&rfr_iscdi=true