Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer

In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, nam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer, Asian research Asian research, 2020-01, Vol.49 (1), p.5-17
Hauptverfasser: Abdel‐Rahman Rashed, Gamal M., El-Fayez, Faiza M. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 5
container_title Heat transfer, Asian research
container_volume 49
creator Abdel‐Rahman Rashed, Gamal M.
El-Fayez, Faiza M. N.
description In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.
doi_str_mv 10.1002/htj.21495
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327857651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327857651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yDgycO2SbbJJkcpapWCB-vBU0h2Ezdlu1uTLGVvPoLP6JMYXa_CwPww38zAB8AlRjOMEJnXcTsjeCHoEZhgSvIsZXacMhIiI7zAp-AshC1CuOC8mIDX59hXg2vfYKwNNNaaMsLOQq8qp6LrWpgq1q79-vi0rtnBsPdqMBVsVdvZpncVtE13gAcXa1gbFWH0qg3W-HNwYlUTzMVfn4KXu9vNcpWtn-4fljfrrMyZoJlgTJOKII0p08gyxJlhOREc61xYqgmlSlc5Z0ohJnQaEYStKfiCF8wIk0_B1Xh377v33oQot13v2_RSkpwUnBaM4kRdj1TpuxC8sXLv3U75QWIkf8zJZE7-mkvsfGQPrjHD_6BcbR7HjW-pWHAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327857651</pqid></control><display><type>article</type><title>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abdel‐Rahman Rashed, Gamal M. ; El-Fayez, Faiza M. N.</creator><creatorcontrib>Abdel‐Rahman Rashed, Gamal M. ; El-Fayez, Faiza M. N.</creatorcontrib><description>In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.</description><identifier>ISSN: 1099-2871</identifier><identifier>EISSN: 1523-1496</identifier><identifier>DOI: 10.1002/htj.21495</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Coefficient of friction ; Comparative studies ; Computational fluid dynamics ; Copper oxides ; Cylinders ; Fluid flow ; Heat transfer ; Iron oxides ; Magnetohydrodynamics ; nanofluid ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Porous media ; porous medium ; Pressure distribution ; Radiation effects ; Skin friction ; spray ; Stress concentration ; stretching cylinder ; temperature buoyancy ; Thermal radiation ; thin film ; Viscosity</subject><ispartof>Heat transfer, Asian research, 2020-01, Vol.49 (1), p.5-17</ispartof><rights>2019 The Authors. Published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</citedby><cites>FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</cites><orcidid>0000-0002-1659-9105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.21495$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.21495$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Abdel‐Rahman Rashed, Gamal M.</creatorcontrib><creatorcontrib>El-Fayez, Faiza M. N.</creatorcontrib><title>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</title><title>Heat transfer, Asian research</title><description>In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.</description><subject>Aluminum oxide</subject><subject>Coefficient of friction</subject><subject>Comparative studies</subject><subject>Computational fluid dynamics</subject><subject>Copper oxides</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Iron oxides</subject><subject>Magnetohydrodynamics</subject><subject>nanofluid</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Porous media</subject><subject>porous medium</subject><subject>Pressure distribution</subject><subject>Radiation effects</subject><subject>Skin friction</subject><subject>spray</subject><subject>Stress concentration</subject><subject>stretching cylinder</subject><subject>temperature buoyancy</subject><subject>Thermal radiation</subject><subject>thin film</subject><subject>Viscosity</subject><issn>1099-2871</issn><issn>1523-1496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMFKAzEQhoMoWKsH3yDgycO2SbbJJkcpapWCB-vBU0h2Ezdlu1uTLGVvPoLP6JMYXa_CwPww38zAB8AlRjOMEJnXcTsjeCHoEZhgSvIsZXacMhIiI7zAp-AshC1CuOC8mIDX59hXg2vfYKwNNNaaMsLOQq8qp6LrWpgq1q79-vi0rtnBsPdqMBVsVdvZpncVtE13gAcXa1gbFWH0qg3W-HNwYlUTzMVfn4KXu9vNcpWtn-4fljfrrMyZoJlgTJOKII0p08gyxJlhOREc61xYqgmlSlc5Z0ohJnQaEYStKfiCF8wIk0_B1Xh377v33oQot13v2_RSkpwUnBaM4kRdj1TpuxC8sXLv3U75QWIkf8zJZE7-mkvsfGQPrjHD_6BcbR7HjW-pWHAo</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Abdel‐Rahman Rashed, Gamal M.</creator><creator>El-Fayez, Faiza M. N.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1659-9105</orcidid></search><sort><creationdate>202001</creationdate><title>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</title><author>Abdel‐Rahman Rashed, Gamal M. ; El-Fayez, Faiza M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Coefficient of friction</topic><topic>Comparative studies</topic><topic>Computational fluid dynamics</topic><topic>Copper oxides</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Iron oxides</topic><topic>Magnetohydrodynamics</topic><topic>nanofluid</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Porous media</topic><topic>porous medium</topic><topic>Pressure distribution</topic><topic>Radiation effects</topic><topic>Skin friction</topic><topic>spray</topic><topic>Stress concentration</topic><topic>stretching cylinder</topic><topic>temperature buoyancy</topic><topic>Thermal radiation</topic><topic>thin film</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdel‐Rahman Rashed, Gamal M.</creatorcontrib><creatorcontrib>El-Fayez, Faiza M. N.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer, Asian research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel‐Rahman Rashed, Gamal M.</au><au>El-Fayez, Faiza M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</atitle><jtitle>Heat transfer, Asian research</jtitle><date>2020-01</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>5</spage><epage>17</epage><pages>5-17</pages><issn>1099-2871</issn><eissn>1523-1496</eissn><abstract>In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/htj.21495</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1659-9105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-2871
ispartof Heat transfer, Asian research, 2020-01, Vol.49 (1), p.5-17
issn 1099-2871
1523-1496
language eng
recordid cdi_proquest_journals_2327857651
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Coefficient of friction
Comparative studies
Computational fluid dynamics
Copper oxides
Cylinders
Fluid flow
Heat transfer
Iron oxides
Magnetohydrodynamics
nanofluid
Nanofluids
Nanoparticles
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Porous media
porous medium
Pressure distribution
Radiation effects
Skin friction
spray
Stress concentration
stretching cylinder
temperature buoyancy
Thermal radiation
thin film
Viscosity
title Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20the%20effect%20of%20radiation%20on%20thin%E2%80%90film%20sprayed%20nanofluid%20flow%20with%20heat%20transfer&rft.jtitle=Heat%20transfer,%20Asian%20research&rft.au=Abdel%E2%80%90Rahman%20Rashed,%20Gamal%20M.&rft.date=2020-01&rft.volume=49&rft.issue=1&rft.spage=5&rft.epage=17&rft.pages=5-17&rft.issn=1099-2871&rft.eissn=1523-1496&rft_id=info:doi/10.1002/htj.21495&rft_dat=%3Cproquest_cross%3E2327857651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327857651&rft_id=info:pmid/&rfr_iscdi=true