Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer
In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, nam...
Gespeichert in:
Veröffentlicht in: | Heat transfer, Asian research Asian research, 2020-01, Vol.49 (1), p.5-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Heat transfer, Asian research |
container_volume | 49 |
creator | Abdel‐Rahman Rashed, Gamal M. El-Fayez, Faiza M. N. |
description | In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters. |
doi_str_mv | 10.1002/htj.21495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327857651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327857651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yDgycO2SbbJJkcpapWCB-vBU0h2Ezdlu1uTLGVvPoLP6JMYXa_CwPww38zAB8AlRjOMEJnXcTsjeCHoEZhgSvIsZXacMhIiI7zAp-AshC1CuOC8mIDX59hXg2vfYKwNNNaaMsLOQq8qp6LrWpgq1q79-vi0rtnBsPdqMBVsVdvZpncVtE13gAcXa1gbFWH0qg3W-HNwYlUTzMVfn4KXu9vNcpWtn-4fljfrrMyZoJlgTJOKII0p08gyxJlhOREc61xYqgmlSlc5Z0ohJnQaEYStKfiCF8wIk0_B1Xh377v33oQot13v2_RSkpwUnBaM4kRdj1TpuxC8sXLv3U75QWIkf8zJZE7-mkvsfGQPrjHD_6BcbR7HjW-pWHAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327857651</pqid></control><display><type>article</type><title>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abdel‐Rahman Rashed, Gamal M. ; El-Fayez, Faiza M. N.</creator><creatorcontrib>Abdel‐Rahman Rashed, Gamal M. ; El-Fayez, Faiza M. N.</creatorcontrib><description>In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.</description><identifier>ISSN: 1099-2871</identifier><identifier>EISSN: 1523-1496</identifier><identifier>DOI: 10.1002/htj.21495</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Coefficient of friction ; Comparative studies ; Computational fluid dynamics ; Copper oxides ; Cylinders ; Fluid flow ; Heat transfer ; Iron oxides ; Magnetohydrodynamics ; nanofluid ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Porous media ; porous medium ; Pressure distribution ; Radiation effects ; Skin friction ; spray ; Stress concentration ; stretching cylinder ; temperature buoyancy ; Thermal radiation ; thin film ; Viscosity</subject><ispartof>Heat transfer, Asian research, 2020-01, Vol.49 (1), p.5-17</ispartof><rights>2019 The Authors. Published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</citedby><cites>FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</cites><orcidid>0000-0002-1659-9105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.21495$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.21495$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Abdel‐Rahman Rashed, Gamal M.</creatorcontrib><creatorcontrib>El-Fayez, Faiza M. N.</creatorcontrib><title>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</title><title>Heat transfer, Asian research</title><description>In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.</description><subject>Aluminum oxide</subject><subject>Coefficient of friction</subject><subject>Comparative studies</subject><subject>Computational fluid dynamics</subject><subject>Copper oxides</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Iron oxides</subject><subject>Magnetohydrodynamics</subject><subject>nanofluid</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Porous media</subject><subject>porous medium</subject><subject>Pressure distribution</subject><subject>Radiation effects</subject><subject>Skin friction</subject><subject>spray</subject><subject>Stress concentration</subject><subject>stretching cylinder</subject><subject>temperature buoyancy</subject><subject>Thermal radiation</subject><subject>thin film</subject><subject>Viscosity</subject><issn>1099-2871</issn><issn>1523-1496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMFKAzEQhoMoWKsH3yDgycO2SbbJJkcpapWCB-vBU0h2Ezdlu1uTLGVvPoLP6JMYXa_CwPww38zAB8AlRjOMEJnXcTsjeCHoEZhgSvIsZXacMhIiI7zAp-AshC1CuOC8mIDX59hXg2vfYKwNNNaaMsLOQq8qp6LrWpgq1q79-vi0rtnBsPdqMBVsVdvZpncVtE13gAcXa1gbFWH0qg3W-HNwYlUTzMVfn4KXu9vNcpWtn-4fljfrrMyZoJlgTJOKII0p08gyxJlhOREc61xYqgmlSlc5Z0ohJnQaEYStKfiCF8wIk0_B1Xh377v33oQot13v2_RSkpwUnBaM4kRdj1TpuxC8sXLv3U75QWIkf8zJZE7-mkvsfGQPrjHD_6BcbR7HjW-pWHAo</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Abdel‐Rahman Rashed, Gamal M.</creator><creator>El-Fayez, Faiza M. N.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1659-9105</orcidid></search><sort><creationdate>202001</creationdate><title>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</title><author>Abdel‐Rahman Rashed, Gamal M. ; El-Fayez, Faiza M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3695-966b2d20b156b0f6086e632981b39f5b255abd386aa069b632201fe784876e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Coefficient of friction</topic><topic>Comparative studies</topic><topic>Computational fluid dynamics</topic><topic>Copper oxides</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Iron oxides</topic><topic>Magnetohydrodynamics</topic><topic>nanofluid</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Porous media</topic><topic>porous medium</topic><topic>Pressure distribution</topic><topic>Radiation effects</topic><topic>Skin friction</topic><topic>spray</topic><topic>Stress concentration</topic><topic>stretching cylinder</topic><topic>temperature buoyancy</topic><topic>Thermal radiation</topic><topic>thin film</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdel‐Rahman Rashed, Gamal M.</creatorcontrib><creatorcontrib>El-Fayez, Faiza M. N.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer, Asian research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel‐Rahman Rashed, Gamal M.</au><au>El-Fayez, Faiza M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer</atitle><jtitle>Heat transfer, Asian research</jtitle><date>2020-01</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>5</spage><epage>17</epage><pages>5-17</pages><issn>1099-2871</issn><eissn>1523-1496</eissn><abstract>In this paper, we discuss thin‐film nanofluid sprayed in non‐Darcian, magnetohydrodynamic, embedding in a porous medium flow and thermal radiation with heat transfer generation on a stretching cylinder. The spray rate is a function of film size. A comparative study is made for the nanoparticles, namely, copper oxide (CuO), alumina oxide (Al2O3), and iron oxide (Fe3O4). The governing continuity, momentum, and energy equations of the nanofluid are reduced using similarity transformation and converted into a system of nonlinear ordinary differential equations, which are solved numerically. Numerical solutions are obtained for the velocity and temperature fields as well as for the skin‐friction coefficient and Nusselt number. The pressure distribution and spray rate are also calculated. The results are presented in graphical forms to study the effects of various parameters.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/htj.21495</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1659-9105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-2871 |
ispartof | Heat transfer, Asian research, 2020-01, Vol.49 (1), p.5-17 |
issn | 1099-2871 1523-1496 |
language | eng |
recordid | cdi_proquest_journals_2327857651 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum oxide Coefficient of friction Comparative studies Computational fluid dynamics Copper oxides Cylinders Fluid flow Heat transfer Iron oxides Magnetohydrodynamics nanofluid Nanofluids Nanoparticles Nonlinear differential equations Nonlinear equations Ordinary differential equations Porous media porous medium Pressure distribution Radiation effects Skin friction spray Stress concentration stretching cylinder temperature buoyancy Thermal radiation thin film Viscosity |
title | Studying the effect of radiation on thin‐film sprayed nanofluid flow with heat transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20the%20effect%20of%20radiation%20on%20thin%E2%80%90film%20sprayed%20nanofluid%20flow%20with%20heat%20transfer&rft.jtitle=Heat%20transfer,%20Asian%20research&rft.au=Abdel%E2%80%90Rahman%20Rashed,%20Gamal%20M.&rft.date=2020-01&rft.volume=49&rft.issue=1&rft.spage=5&rft.epage=17&rft.pages=5-17&rft.issn=1099-2871&rft.eissn=1523-1496&rft_id=info:doi/10.1002/htj.21495&rft_dat=%3Cproquest_cross%3E2327857651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327857651&rft_id=info:pmid/&rfr_iscdi=true |