Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules

Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2019-12, Vol.25 (71), p.16179-16200
Hauptverfasser: Carloni, Laure‐Elie, Bezzu, C. Grazia, Bonifazi, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16200
container_issue 71
container_start_page 16179
container_title Chemistry : a European journal
container_volume 25
creator Carloni, Laure‐Elie
Bezzu, C. Grazia
Bonifazi, Davide
description Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques. 3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.
doi_str_mv 10.1002/chem.201902576
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327797738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327797738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqWwZYkisU7xI7bjZakKRSpQ8VhbTjJpU5Ia7ERVd3wC38iXkKqlLNl4ZOnMmZmL0DnBfYIxvUrnUPUpJgpTLsUB6hJOScik4Ieoi1UkQ8GZ6qAT7xcYYyUYO0YdRiJFcKS66Glq6hrcsljOgql1tvHBA9Qr6958UM_b_2wePEOZf39-DbyHKinXgc2DqbMzZ6oKsuC6sJVJna1sCWlTgj9FR7kpPZztag-93oxehuNw8nh7NxxMwjTiWIRpLAWAShVnlEd5HMsU4kjkiZIJkCxLjSAyjoGLjBhqgLIkUxGonFHSvjHrocut993ZjwZ8rRe2cct2pKaMSqmkZBuqv6XaFb13kOt3V1TGrTXBehOh3kSo9xG2DRc7bZO09-3x38xaQG2BVVHC-h-dHo5H93_yH60Nf5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327797738</pqid></control><display><type>article</type><title>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carloni, Laure‐Elie ; Bezzu, C. Grazia ; Bonifazi, Davide</creator><creatorcontrib>Carloni, Laure‐Elie ; Bezzu, C. Grazia ; Bonifazi, Davide</creatorcontrib><description>Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques. 3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201902576</identifier><identifier>PMID: 31491049</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; biomacromolecules ; Biomimetics ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA nanotechnology ; Fabrication ; Functional materials ; host–guest systems ; Hydrogen Bonding ; Imaging techniques ; Microscopy ; Microscopy, Atomic Force ; Multifunctional materials ; Nanoelectronics ; Nanostructures - chemistry ; Nanotechnology ; Networks ; Nucleic acids ; Peptides - chemistry ; Polypeptides ; Porosity ; Proteins ; Proteins - chemistry ; Scanning probe microscopy ; supramolecular chemistry ; surfaces ; Transmission electron microscopy</subject><ispartof>Chemistry : a European journal, 2019-12, Vol.25 (71), p.16179-16200</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</citedby><cites>FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</cites><orcidid>0000-0001-6918-8281 ; 0000-0001-5717-0121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201902576$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201902576$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carloni, Laure‐Elie</creatorcontrib><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Bonifazi, Davide</creatorcontrib><title>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques. 3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.</description><subject>Assembly</subject><subject>biomacromolecules</subject><subject>Biomimetics</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA nanotechnology</subject><subject>Fabrication</subject><subject>Functional materials</subject><subject>host–guest systems</subject><subject>Hydrogen Bonding</subject><subject>Imaging techniques</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Multifunctional materials</subject><subject>Nanoelectronics</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Networks</subject><subject>Nucleic acids</subject><subject>Peptides - chemistry</subject><subject>Polypeptides</subject><subject>Porosity</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Scanning probe microscopy</subject><subject>supramolecular chemistry</subject><subject>surfaces</subject><subject>Transmission electron microscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqWwZYkisU7xI7bjZakKRSpQ8VhbTjJpU5Ia7ERVd3wC38iXkKqlLNl4ZOnMmZmL0DnBfYIxvUrnUPUpJgpTLsUB6hJOScik4Ieoi1UkQ8GZ6qAT7xcYYyUYO0YdRiJFcKS66Glq6hrcsljOgql1tvHBA9Qr6958UM_b_2wePEOZf39-DbyHKinXgc2DqbMzZ6oKsuC6sJVJna1sCWlTgj9FR7kpPZztag-93oxehuNw8nh7NxxMwjTiWIRpLAWAShVnlEd5HMsU4kjkiZIJkCxLjSAyjoGLjBhqgLIkUxGonFHSvjHrocut993ZjwZ8rRe2cct2pKaMSqmkZBuqv6XaFb13kOt3V1TGrTXBehOh3kSo9xG2DRc7bZO09-3x38xaQG2BVVHC-h-dHo5H93_yH60Nf5I</recordid><startdate>20191218</startdate><enddate>20191218</enddate><creator>Carloni, Laure‐Elie</creator><creator>Bezzu, C. Grazia</creator><creator>Bonifazi, Davide</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6918-8281</orcidid><orcidid>https://orcid.org/0000-0001-5717-0121</orcidid></search><sort><creationdate>20191218</creationdate><title>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</title><author>Carloni, Laure‐Elie ; Bezzu, C. Grazia ; Bonifazi, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembly</topic><topic>biomacromolecules</topic><topic>Biomimetics</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA nanotechnology</topic><topic>Fabrication</topic><topic>Functional materials</topic><topic>host–guest systems</topic><topic>Hydrogen Bonding</topic><topic>Imaging techniques</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Multifunctional materials</topic><topic>Nanoelectronics</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Networks</topic><topic>Nucleic acids</topic><topic>Peptides - chemistry</topic><topic>Polypeptides</topic><topic>Porosity</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Scanning probe microscopy</topic><topic>supramolecular chemistry</topic><topic>surfaces</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carloni, Laure‐Elie</creatorcontrib><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Bonifazi, Davide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carloni, Laure‐Elie</au><au>Bezzu, C. Grazia</au><au>Bonifazi, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-12-18</date><risdate>2019</risdate><volume>25</volume><issue>71</issue><spage>16179</spage><epage>16200</epage><pages>16179-16200</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques. 3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31491049</pmid><doi>10.1002/chem.201902576</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6918-8281</orcidid><orcidid>https://orcid.org/0000-0001-5717-0121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2019-12, Vol.25 (71), p.16179-16200
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_journals_2327797738
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Assembly
biomacromolecules
Biomimetics
Chemistry
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA nanotechnology
Fabrication
Functional materials
host–guest systems
Hydrogen Bonding
Imaging techniques
Microscopy
Microscopy, Atomic Force
Multifunctional materials
Nanoelectronics
Nanostructures - chemistry
Nanotechnology
Networks
Nucleic acids
Peptides - chemistry
Polypeptides
Porosity
Proteins
Proteins - chemistry
Scanning probe microscopy
supramolecular chemistry
surfaces
Transmission electron microscopy
title Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterning%20Porous%20Networks%20through%20Self%E2%80%90Assembly%20of%20Programmed%20Biomacromolecules&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Carloni,%20Laure%E2%80%90Elie&rft.date=2019-12-18&rft.volume=25&rft.issue=71&rft.spage=16179&rft.epage=16200&rft.pages=16179-16200&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201902576&rft_dat=%3Cproquest_cross%3E2327797738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327797738&rft_id=info:pmid/31491049&rfr_iscdi=true