Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules
Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2019-12, Vol.25 (71), p.16179-16200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16200 |
---|---|
container_issue | 71 |
container_start_page | 16179 |
container_title | Chemistry : a European journal |
container_volume | 25 |
creator | Carloni, Laure‐Elie Bezzu, C. Grazia Bonifazi, Davide |
description | Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics. |
doi_str_mv | 10.1002/chem.201902576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327797738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327797738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqWwZYkisU7xI7bjZakKRSpQ8VhbTjJpU5Ia7ERVd3wC38iXkKqlLNl4ZOnMmZmL0DnBfYIxvUrnUPUpJgpTLsUB6hJOScik4Ieoi1UkQ8GZ6qAT7xcYYyUYO0YdRiJFcKS66Glq6hrcsljOgql1tvHBA9Qr6958UM_b_2wePEOZf39-DbyHKinXgc2DqbMzZ6oKsuC6sJVJna1sCWlTgj9FR7kpPZztag-93oxehuNw8nh7NxxMwjTiWIRpLAWAShVnlEd5HMsU4kjkiZIJkCxLjSAyjoGLjBhqgLIkUxGonFHSvjHrocut993ZjwZ8rRe2cct2pKaMSqmkZBuqv6XaFb13kOt3V1TGrTXBehOh3kSo9xG2DRc7bZO09-3x38xaQG2BVVHC-h-dHo5H93_yH60Nf5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327797738</pqid></control><display><type>article</type><title>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carloni, Laure‐Elie ; Bezzu, C. Grazia ; Bonifazi, Davide</creator><creatorcontrib>Carloni, Laure‐Elie ; Bezzu, C. Grazia ; Bonifazi, Davide</creatorcontrib><description>Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201902576</identifier><identifier>PMID: 31491049</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; biomacromolecules ; Biomimetics ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA nanotechnology ; Fabrication ; Functional materials ; host–guest systems ; Hydrogen Bonding ; Imaging techniques ; Microscopy ; Microscopy, Atomic Force ; Multifunctional materials ; Nanoelectronics ; Nanostructures - chemistry ; Nanotechnology ; Networks ; Nucleic acids ; Peptides - chemistry ; Polypeptides ; Porosity ; Proteins ; Proteins - chemistry ; Scanning probe microscopy ; supramolecular chemistry ; surfaces ; Transmission electron microscopy</subject><ispartof>Chemistry : a European journal, 2019-12, Vol.25 (71), p.16179-16200</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</citedby><cites>FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</cites><orcidid>0000-0001-6918-8281 ; 0000-0001-5717-0121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201902576$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201902576$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carloni, Laure‐Elie</creatorcontrib><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Bonifazi, Davide</creatorcontrib><title>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.</description><subject>Assembly</subject><subject>biomacromolecules</subject><subject>Biomimetics</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA nanotechnology</subject><subject>Fabrication</subject><subject>Functional materials</subject><subject>host–guest systems</subject><subject>Hydrogen Bonding</subject><subject>Imaging techniques</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Multifunctional materials</subject><subject>Nanoelectronics</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Networks</subject><subject>Nucleic acids</subject><subject>Peptides - chemistry</subject><subject>Polypeptides</subject><subject>Porosity</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Scanning probe microscopy</subject><subject>supramolecular chemistry</subject><subject>surfaces</subject><subject>Transmission electron microscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqWwZYkisU7xI7bjZakKRSpQ8VhbTjJpU5Ia7ERVd3wC38iXkKqlLNl4ZOnMmZmL0DnBfYIxvUrnUPUpJgpTLsUB6hJOScik4Ieoi1UkQ8GZ6qAT7xcYYyUYO0YdRiJFcKS66Glq6hrcsljOgql1tvHBA9Qr6958UM_b_2wePEOZf39-DbyHKinXgc2DqbMzZ6oKsuC6sJVJna1sCWlTgj9FR7kpPZztag-93oxehuNw8nh7NxxMwjTiWIRpLAWAShVnlEd5HMsU4kjkiZIJkCxLjSAyjoGLjBhqgLIkUxGonFHSvjHrocut993ZjwZ8rRe2cct2pKaMSqmkZBuqv6XaFb13kOt3V1TGrTXBehOh3kSo9xG2DRc7bZO09-3x38xaQG2BVVHC-h-dHo5H93_yH60Nf5I</recordid><startdate>20191218</startdate><enddate>20191218</enddate><creator>Carloni, Laure‐Elie</creator><creator>Bezzu, C. Grazia</creator><creator>Bonifazi, Davide</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6918-8281</orcidid><orcidid>https://orcid.org/0000-0001-5717-0121</orcidid></search><sort><creationdate>20191218</creationdate><title>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</title><author>Carloni, Laure‐Elie ; Bezzu, C. Grazia ; Bonifazi, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-c876ee9c953254f887ce846fb97be1ddca61788e56d1a2ae23bd94e9f321e9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembly</topic><topic>biomacromolecules</topic><topic>Biomimetics</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA nanotechnology</topic><topic>Fabrication</topic><topic>Functional materials</topic><topic>host–guest systems</topic><topic>Hydrogen Bonding</topic><topic>Imaging techniques</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Multifunctional materials</topic><topic>Nanoelectronics</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Networks</topic><topic>Nucleic acids</topic><topic>Peptides - chemistry</topic><topic>Polypeptides</topic><topic>Porosity</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Scanning probe microscopy</topic><topic>supramolecular chemistry</topic><topic>surfaces</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carloni, Laure‐Elie</creatorcontrib><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Bonifazi, Davide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carloni, Laure‐Elie</au><au>Bezzu, C. Grazia</au><au>Bonifazi, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-12-18</date><risdate>2019</risdate><volume>25</volume><issue>71</issue><spage>16179</spage><epage>16200</epage><pages>16179-16200</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Two‐dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom‐up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two‐dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self‐assembly through specific hydrogen‐bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
3, 2, 1, self‐assemble! The self‐assembly of programmed organic molecules and biomacromolecules into two‐dimensional porous networks constitutes an efficient bottom‐up route towards the fabrication of functional materials. These networks can be used as templates to organize guests, such as nanoparticles, proteins and fluorophores into regular arrays, thereby producing functional materials for potential applications in nanotechnologies and nanoelectronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31491049</pmid><doi>10.1002/chem.201902576</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6918-8281</orcidid><orcidid>https://orcid.org/0000-0001-5717-0121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2019-12, Vol.25 (71), p.16179-16200 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_journals_2327797738 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Assembly biomacromolecules Biomimetics Chemistry Deoxyribonucleic acid DNA DNA - chemistry DNA nanotechnology Fabrication Functional materials host–guest systems Hydrogen Bonding Imaging techniques Microscopy Microscopy, Atomic Force Multifunctional materials Nanoelectronics Nanostructures - chemistry Nanotechnology Networks Nucleic acids Peptides - chemistry Polypeptides Porosity Proteins Proteins - chemistry Scanning probe microscopy supramolecular chemistry surfaces Transmission electron microscopy |
title | Patterning Porous Networks through Self‐Assembly of Programmed Biomacromolecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterning%20Porous%20Networks%20through%20Self%E2%80%90Assembly%20of%20Programmed%20Biomacromolecules&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Carloni,%20Laure%E2%80%90Elie&rft.date=2019-12-18&rft.volume=25&rft.issue=71&rft.spage=16179&rft.epage=16200&rft.pages=16179-16200&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201902576&rft_dat=%3Cproquest_cross%3E2327797738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327797738&rft_id=info:pmid/31491049&rfr_iscdi=true |