Common Voice: A Massively-Multilingual Speech Corpus
The Common Voice corpus is a massively-multilingual collection of transcribed speech intended for speech technology research and development. Common Voice is designed for Automatic Speech Recognition purposes but can be useful in other domains (e.g. language identification). To achieve scale and sus...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ardila, Rosana Branson, Megan Davis, Kelly Henretty, Michael Kohler, Michael Meyer, Josh Morais, Reuben Saunders, Lindsay Tyers, Francis M Weber, Gregor |
description | The Common Voice corpus is a massively-multilingual collection of transcribed speech intended for speech technology research and development. Common Voice is designed for Automatic Speech Recognition purposes but can be useful in other domains (e.g. language identification). To achieve scale and sustainability, the Common Voice project employs crowdsourcing for both data collection and data validation. The most recent release includes 29 languages, and as of November 2019 there are a total of 38 languages collecting data. Over 50,000 individuals have participated so far, resulting in 2,500 hours of collected audio. To our knowledge this is the largest audio corpus in the public domain for speech recognition, both in terms of number of hours and number of languages. As an example use case for Common Voice, we present speech recognition experiments using Mozilla's DeepSpeech Speech-to-Text toolkit. By applying transfer learning from a source English model, we find an average Character Error Rate improvement of 5.99 +/- 5.48 for twelve target languages (German, French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton, Tatar, Chuvash, and Kabyle). For most of these languages, these are the first ever published results on end-to-end Automatic Speech Recognition. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2327676550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327676550</sourcerecordid><originalsourceid>FETCH-proquest_journals_23276765503</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcc7Pzc3PUwjLz0xOtVJwVPBNLC7OLEvNqdT1Lc0pyczJzEsvTcxRCC5ITU3OUHDOLyooLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjYyNzM3MzU1MDY-JUAQAhvTQ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327676550</pqid></control><display><type>article</type><title>Common Voice: A Massively-Multilingual Speech Corpus</title><source>Free E- Journals</source><creator>Ardila, Rosana ; Branson, Megan ; Davis, Kelly ; Henretty, Michael ; Kohler, Michael ; Meyer, Josh ; Morais, Reuben ; Saunders, Lindsay ; Tyers, Francis M ; Weber, Gregor</creator><creatorcontrib>Ardila, Rosana ; Branson, Megan ; Davis, Kelly ; Henretty, Michael ; Kohler, Michael ; Meyer, Josh ; Morais, Reuben ; Saunders, Lindsay ; Tyers, Francis M ; Weber, Gregor</creatorcontrib><description>The Common Voice corpus is a massively-multilingual collection of transcribed speech intended for speech technology research and development. Common Voice is designed for Automatic Speech Recognition purposes but can be useful in other domains (e.g. language identification). To achieve scale and sustainability, the Common Voice project employs crowdsourcing for both data collection and data validation. The most recent release includes 29 languages, and as of November 2019 there are a total of 38 languages collecting data. Over 50,000 individuals have participated so far, resulting in 2,500 hours of collected audio. To our knowledge this is the largest audio corpus in the public domain for speech recognition, both in terms of number of hours and number of languages. As an example use case for Common Voice, we present speech recognition experiments using Mozilla's DeepSpeech Speech-to-Text toolkit. By applying transfer learning from a source English model, we find an average Character Error Rate improvement of 5.99 +/- 5.48 for twelve target languages (German, French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton, Tatar, Chuvash, and Kabyle). For most of these languages, these are the first ever published results on end-to-end Automatic Speech Recognition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; Data collection ; Languages ; Multilingualism ; Public domain ; R&D ; Research & development ; Speech ; Voice recognition</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ardila, Rosana</creatorcontrib><creatorcontrib>Branson, Megan</creatorcontrib><creatorcontrib>Davis, Kelly</creatorcontrib><creatorcontrib>Henretty, Michael</creatorcontrib><creatorcontrib>Kohler, Michael</creatorcontrib><creatorcontrib>Meyer, Josh</creatorcontrib><creatorcontrib>Morais, Reuben</creatorcontrib><creatorcontrib>Saunders, Lindsay</creatorcontrib><creatorcontrib>Tyers, Francis M</creatorcontrib><creatorcontrib>Weber, Gregor</creatorcontrib><title>Common Voice: A Massively-Multilingual Speech Corpus</title><title>arXiv.org</title><description>The Common Voice corpus is a massively-multilingual collection of transcribed speech intended for speech technology research and development. Common Voice is designed for Automatic Speech Recognition purposes but can be useful in other domains (e.g. language identification). To achieve scale and sustainability, the Common Voice project employs crowdsourcing for both data collection and data validation. The most recent release includes 29 languages, and as of November 2019 there are a total of 38 languages collecting data. Over 50,000 individuals have participated so far, resulting in 2,500 hours of collected audio. To our knowledge this is the largest audio corpus in the public domain for speech recognition, both in terms of number of hours and number of languages. As an example use case for Common Voice, we present speech recognition experiments using Mozilla's DeepSpeech Speech-to-Text toolkit. By applying transfer learning from a source English model, we find an average Character Error Rate improvement of 5.99 +/- 5.48 for twelve target languages (German, French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton, Tatar, Chuvash, and Kabyle). For most of these languages, these are the first ever published results on end-to-end Automatic Speech Recognition.</description><subject>Automatic speech recognition</subject><subject>Data collection</subject><subject>Languages</subject><subject>Multilingualism</subject><subject>Public domain</subject><subject>R&D</subject><subject>Research & development</subject><subject>Speech</subject><subject>Voice recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcc7Pzc3PUwjLz0xOtVJwVPBNLC7OLEvNqdT1Lc0pyczJzEsvTcxRCC5ITU3OUHDOLyooLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjYyNzM3MzU1MDY-JUAQAhvTQ-</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Ardila, Rosana</creator><creator>Branson, Megan</creator><creator>Davis, Kelly</creator><creator>Henretty, Michael</creator><creator>Kohler, Michael</creator><creator>Meyer, Josh</creator><creator>Morais, Reuben</creator><creator>Saunders, Lindsay</creator><creator>Tyers, Francis M</creator><creator>Weber, Gregor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200305</creationdate><title>Common Voice: A Massively-Multilingual Speech Corpus</title><author>Ardila, Rosana ; Branson, Megan ; Davis, Kelly ; Henretty, Michael ; Kohler, Michael ; Meyer, Josh ; Morais, Reuben ; Saunders, Lindsay ; Tyers, Francis M ; Weber, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23276765503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic speech recognition</topic><topic>Data collection</topic><topic>Languages</topic><topic>Multilingualism</topic><topic>Public domain</topic><topic>R&D</topic><topic>Research & development</topic><topic>Speech</topic><topic>Voice recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Ardila, Rosana</creatorcontrib><creatorcontrib>Branson, Megan</creatorcontrib><creatorcontrib>Davis, Kelly</creatorcontrib><creatorcontrib>Henretty, Michael</creatorcontrib><creatorcontrib>Kohler, Michael</creatorcontrib><creatorcontrib>Meyer, Josh</creatorcontrib><creatorcontrib>Morais, Reuben</creatorcontrib><creatorcontrib>Saunders, Lindsay</creatorcontrib><creatorcontrib>Tyers, Francis M</creatorcontrib><creatorcontrib>Weber, Gregor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ardila, Rosana</au><au>Branson, Megan</au><au>Davis, Kelly</au><au>Henretty, Michael</au><au>Kohler, Michael</au><au>Meyer, Josh</au><au>Morais, Reuben</au><au>Saunders, Lindsay</au><au>Tyers, Francis M</au><au>Weber, Gregor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Common Voice: A Massively-Multilingual Speech Corpus</atitle><jtitle>arXiv.org</jtitle><date>2020-03-05</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The Common Voice corpus is a massively-multilingual collection of transcribed speech intended for speech technology research and development. Common Voice is designed for Automatic Speech Recognition purposes but can be useful in other domains (e.g. language identification). To achieve scale and sustainability, the Common Voice project employs crowdsourcing for both data collection and data validation. The most recent release includes 29 languages, and as of November 2019 there are a total of 38 languages collecting data. Over 50,000 individuals have participated so far, resulting in 2,500 hours of collected audio. To our knowledge this is the largest audio corpus in the public domain for speech recognition, both in terms of number of hours and number of languages. As an example use case for Common Voice, we present speech recognition experiments using Mozilla's DeepSpeech Speech-to-Text toolkit. By applying transfer learning from a source English model, we find an average Character Error Rate improvement of 5.99 +/- 5.48 for twelve target languages (German, French, Italian, Turkish, Catalan, Slovenian, Welsh, Irish, Breton, Tatar, Chuvash, and Kabyle). For most of these languages, these are the first ever published results on end-to-end Automatic Speech Recognition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2327676550 |
source | Free E- Journals |
subjects | Automatic speech recognition Data collection Languages Multilingualism Public domain R&D Research & development Speech Voice recognition |
title | Common Voice: A Massively-Multilingual Speech Corpus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Common%20Voice:%20A%20Massively-Multilingual%20Speech%20Corpus&rft.jtitle=arXiv.org&rft.au=Ardila,%20Rosana&rft.date=2020-03-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2327676550%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327676550&rft_id=info:pmid/&rfr_iscdi=true |