Settling disks in a linearly stratified fluid
We consider the unbounded settling dynamics of a circular disk of diameter $d$ and finite thickness $h$ evolving with a vertical speed $U$ in a linearly stratified fluid of kinematic viscosity $\unicode[STIX]{x1D708}$ and diffusivity $\unicode[STIX]{x1D705}$ of the stratifying agent, at moderate Rey...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-02, Vol.885, Article A2 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 885 |
creator | Mercier, M. J. Wang, S. Péméja, J. Ern, P. Ardekani, A. M. |
description | We consider the unbounded settling dynamics of a circular disk of diameter
$d$
and finite thickness
$h$
evolving with a vertical speed
$U$
in a linearly stratified fluid of kinematic viscosity
$\unicode[STIX]{x1D708}$
and diffusivity
$\unicode[STIX]{x1D705}$
of the stratifying agent, at moderate Reynolds numbers (
$Re=Ud/\unicode[STIX]{x1D708}$
). The influence of the disk geometry (diameter
$d$
and aspect ratio
$\unicode[STIX]{x1D712}=d/h$
) and of the stratified environment (buoyancy frequency
$N$
, viscosity and diffusivity) are experimentally and numerically investigated. Three regimes for the settling dynamics have been identified for a disk reaching its gravitational equilibrium level. The disk first falls broadside-on, experiencing an enhanced drag force that can be linked to the stratification. A second regime corresponds to a change of stability for the disk orientation, from broadside-on to edgewise settling. This occurs when the non-dimensional velocity
$U/\sqrt{\unicode[STIX]{x1D708}N}$
becomes smaller than some threshold value. Uncertainties in identifying the threshold value is discussed in terms of disk quality. It differs from the same problem in a homogeneous fluid which is associated with a fixed orientation (at its initial value) in the Stokes regime and a broadside-on settling orientation at low, but finite Reynolds numbers. Finally, the third regime corresponds to the disk returning to its broadside orientation after stopping at its neutrally buoyant level. |
doi_str_mv | 10.1017/jfm.2019.957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327644794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327644794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-28907c116715754f07661953ed6e1158c4d0bb746dc0aeae962dada03ed034933</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoOFZ3_oCAW2d8L8kkzVKKX1Bwoa5DOkkk47RTk5lF_70pdfW4cLiXdwi5RWgQUD30YdswQN3oVp2RCoXUtZKiPScVAGM1IoNLcpVzD4ActKpI_eGnaYi7b-pi_sk07qilJXubhgPNU7JTDNE7GoY5umtyEeyQ_c3_XZCv56fP1Wu9fn95Wz2u605wNdVsqUF1iFJhq1oRQEmJuuXeSY_YLjvhYLNRQroOrLdeS-ass1AA4EJzviB3p959Gn9nnyfTj3PalUnDOCsvCaVFoe5PVJfGnJMPZp_i1qaDQTBHIaYIMUchpgjhf53jUZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327644794</pqid></control><display><type>article</type><title>Settling disks in a linearly stratified fluid</title><source>Cambridge University Press Journals Complete</source><creator>Mercier, M. J. ; Wang, S. ; Péméja, J. ; Ern, P. ; Ardekani, A. M.</creator><creatorcontrib>Mercier, M. J. ; Wang, S. ; Péméja, J. ; Ern, P. ; Ardekani, A. M.</creatorcontrib><description>We consider the unbounded settling dynamics of a circular disk of diameter
$d$
and finite thickness
$h$
evolving with a vertical speed
$U$
in a linearly stratified fluid of kinematic viscosity
$\unicode[STIX]{x1D708}$
and diffusivity
$\unicode[STIX]{x1D705}$
of the stratifying agent, at moderate Reynolds numbers (
$Re=Ud/\unicode[STIX]{x1D708}$
). The influence of the disk geometry (diameter
$d$
and aspect ratio
$\unicode[STIX]{x1D712}=d/h$
) and of the stratified environment (buoyancy frequency
$N$
, viscosity and diffusivity) are experimentally and numerically investigated. Three regimes for the settling dynamics have been identified for a disk reaching its gravitational equilibrium level. The disk first falls broadside-on, experiencing an enhanced drag force that can be linked to the stratification. A second regime corresponds to a change of stability for the disk orientation, from broadside-on to edgewise settling. This occurs when the non-dimensional velocity
$U/\sqrt{\unicode[STIX]{x1D708}N}$
becomes smaller than some threshold value. Uncertainties in identifying the threshold value is discussed in terms of disk quality. It differs from the same problem in a homogeneous fluid which is associated with a fixed orientation (at its initial value) in the Stokes regime and a broadside-on settling orientation at low, but finite Reynolds numbers. Finally, the third regime corresponds to the disk returning to its broadside orientation after stopping at its neutrally buoyant level.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.957</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Aspect ratio ; Brunt-vaisala frequency ; Computational fluid dynamics ; Diameters ; Diffusion coefficients ; Diffusivity ; Disks ; Drag ; Dynamics ; Fluids ; Gravity ; Kinematic viscosity ; Kinematics ; Orientation ; Pollutants ; Reynolds number ; Settling ; Stability ; Stratification ; Studies ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2020-02, Vol.885, Article A2</ispartof><rights>Copyright Cambridge University Press Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-28907c116715754f07661953ed6e1158c4d0bb746dc0aeae962dada03ed034933</citedby><cites>FETCH-LOGICAL-c437t-28907c116715754f07661953ed6e1158c4d0bb746dc0aeae962dada03ed034933</cites><orcidid>0000-0003-3301-3193 ; 0000-0001-9965-3316 ; 0000-0002-6246-9352 ; 0000-0002-6431-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mercier, M. J.</creatorcontrib><creatorcontrib>Wang, S.</creatorcontrib><creatorcontrib>Péméja, J.</creatorcontrib><creatorcontrib>Ern, P.</creatorcontrib><creatorcontrib>Ardekani, A. M.</creatorcontrib><title>Settling disks in a linearly stratified fluid</title><title>Journal of fluid mechanics</title><description>We consider the unbounded settling dynamics of a circular disk of diameter
$d$
and finite thickness
$h$
evolving with a vertical speed
$U$
in a linearly stratified fluid of kinematic viscosity
$\unicode[STIX]{x1D708}$
and diffusivity
$\unicode[STIX]{x1D705}$
of the stratifying agent, at moderate Reynolds numbers (
$Re=Ud/\unicode[STIX]{x1D708}$
). The influence of the disk geometry (diameter
$d$
and aspect ratio
$\unicode[STIX]{x1D712}=d/h$
) and of the stratified environment (buoyancy frequency
$N$
, viscosity and diffusivity) are experimentally and numerically investigated. Three regimes for the settling dynamics have been identified for a disk reaching its gravitational equilibrium level. The disk first falls broadside-on, experiencing an enhanced drag force that can be linked to the stratification. A second regime corresponds to a change of stability for the disk orientation, from broadside-on to edgewise settling. This occurs when the non-dimensional velocity
$U/\sqrt{\unicode[STIX]{x1D708}N}$
becomes smaller than some threshold value. Uncertainties in identifying the threshold value is discussed in terms of disk quality. It differs from the same problem in a homogeneous fluid which is associated with a fixed orientation (at its initial value) in the Stokes regime and a broadside-on settling orientation at low, but finite Reynolds numbers. Finally, the third regime corresponds to the disk returning to its broadside orientation after stopping at its neutrally buoyant level.</description><subject>Aspect ratio</subject><subject>Brunt-vaisala frequency</subject><subject>Computational fluid dynamics</subject><subject>Diameters</subject><subject>Diffusion coefficients</subject><subject>Diffusivity</subject><subject>Disks</subject><subject>Drag</subject><subject>Dynamics</subject><subject>Fluids</subject><subject>Gravity</subject><subject>Kinematic viscosity</subject><subject>Kinematics</subject><subject>Orientation</subject><subject>Pollutants</subject><subject>Reynolds number</subject><subject>Settling</subject><subject>Stability</subject><subject>Stratification</subject><subject>Studies</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEURYMoOFZ3_oCAW2d8L8kkzVKKX1Bwoa5DOkkk47RTk5lF_70pdfW4cLiXdwi5RWgQUD30YdswQN3oVp2RCoXUtZKiPScVAGM1IoNLcpVzD4ActKpI_eGnaYi7b-pi_sk07qilJXubhgPNU7JTDNE7GoY5umtyEeyQ_c3_XZCv56fP1Wu9fn95Wz2u605wNdVsqUF1iFJhq1oRQEmJuuXeSY_YLjvhYLNRQroOrLdeS-ass1AA4EJzviB3p959Gn9nnyfTj3PalUnDOCsvCaVFoe5PVJfGnJMPZp_i1qaDQTBHIaYIMUchpgjhf53jUZg</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Mercier, M. J.</creator><creator>Wang, S.</creator><creator>Péméja, J.</creator><creator>Ern, P.</creator><creator>Ardekani, A. M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3301-3193</orcidid><orcidid>https://orcid.org/0000-0001-9965-3316</orcidid><orcidid>https://orcid.org/0000-0002-6246-9352</orcidid><orcidid>https://orcid.org/0000-0002-6431-9083</orcidid></search><sort><creationdate>20200225</creationdate><title>Settling disks in a linearly stratified fluid</title><author>Mercier, M. J. ; Wang, S. ; Péméja, J. ; Ern, P. ; Ardekani, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-28907c116715754f07661953ed6e1158c4d0bb746dc0aeae962dada03ed034933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aspect ratio</topic><topic>Brunt-vaisala frequency</topic><topic>Computational fluid dynamics</topic><topic>Diameters</topic><topic>Diffusion coefficients</topic><topic>Diffusivity</topic><topic>Disks</topic><topic>Drag</topic><topic>Dynamics</topic><topic>Fluids</topic><topic>Gravity</topic><topic>Kinematic viscosity</topic><topic>Kinematics</topic><topic>Orientation</topic><topic>Pollutants</topic><topic>Reynolds number</topic><topic>Settling</topic><topic>Stability</topic><topic>Stratification</topic><topic>Studies</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mercier, M. J.</creatorcontrib><creatorcontrib>Wang, S.</creatorcontrib><creatorcontrib>Péméja, J.</creatorcontrib><creatorcontrib>Ern, P.</creatorcontrib><creatorcontrib>Ardekani, A. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mercier, M. J.</au><au>Wang, S.</au><au>Péméja, J.</au><au>Ern, P.</au><au>Ardekani, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Settling disks in a linearly stratified fluid</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-02-25</date><risdate>2020</risdate><volume>885</volume><artnum>A2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We consider the unbounded settling dynamics of a circular disk of diameter
$d$
and finite thickness
$h$
evolving with a vertical speed
$U$
in a linearly stratified fluid of kinematic viscosity
$\unicode[STIX]{x1D708}$
and diffusivity
$\unicode[STIX]{x1D705}$
of the stratifying agent, at moderate Reynolds numbers (
$Re=Ud/\unicode[STIX]{x1D708}$
). The influence of the disk geometry (diameter
$d$
and aspect ratio
$\unicode[STIX]{x1D712}=d/h$
) and of the stratified environment (buoyancy frequency
$N$
, viscosity and diffusivity) are experimentally and numerically investigated. Three regimes for the settling dynamics have been identified for a disk reaching its gravitational equilibrium level. The disk first falls broadside-on, experiencing an enhanced drag force that can be linked to the stratification. A second regime corresponds to a change of stability for the disk orientation, from broadside-on to edgewise settling. This occurs when the non-dimensional velocity
$U/\sqrt{\unicode[STIX]{x1D708}N}$
becomes smaller than some threshold value. Uncertainties in identifying the threshold value is discussed in terms of disk quality. It differs from the same problem in a homogeneous fluid which is associated with a fixed orientation (at its initial value) in the Stokes regime and a broadside-on settling orientation at low, but finite Reynolds numbers. Finally, the third regime corresponds to the disk returning to its broadside orientation after stopping at its neutrally buoyant level.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.957</doi><orcidid>https://orcid.org/0000-0003-3301-3193</orcidid><orcidid>https://orcid.org/0000-0001-9965-3316</orcidid><orcidid>https://orcid.org/0000-0002-6246-9352</orcidid><orcidid>https://orcid.org/0000-0002-6431-9083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-02, Vol.885, Article A2 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2327644794 |
source | Cambridge University Press Journals Complete |
subjects | Aspect ratio Brunt-vaisala frequency Computational fluid dynamics Diameters Diffusion coefficients Diffusivity Disks Drag Dynamics Fluids Gravity Kinematic viscosity Kinematics Orientation Pollutants Reynolds number Settling Stability Stratification Studies Velocity Viscosity |
title | Settling disks in a linearly stratified fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Settling%20disks%20in%20a%20linearly%20stratified%20fluid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Mercier,%20M.%20J.&rft.date=2020-02-25&rft.volume=885&rft.artnum=A2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.957&rft_dat=%3Cproquest_cross%3E2327644794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327644794&rft_id=info:pmid/&rfr_iscdi=true |