Dynamical Chaos in a Nonlinear System with 1/f Spectrum
A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/ f spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/ f behavio...
Gespeichert in:
Veröffentlicht in: | Technical physics letters 2019-11, Vol.45 (11), p.1159-1162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1162 |
---|---|
container_issue | 11 |
container_start_page | 1159 |
container_title | Technical physics letters |
container_volume | 45 |
creator | Koverda, V. P. Skokov, V. N. |
description | A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/
f
spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/
f
behavior of the power spectra. The stochastic resonance and 1/
f
behavior correspond to the maximum of information entropy, which is evidence of stability of the random process. |
doi_str_mv | 10.1134/S1063785019110233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327542613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327542613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYfwNuC59iZney2e5SqVSh6qJ7DZLOxKU1Sd1Okb-Oz-GSmVPAgnuaH-f5_hl-IS4RrREpHCwRD44kGtIigiI7EAMFCYjTR8V4bSvb7U3EW4woAJkrbgbC3u4bryvFaTpfcRlk1kuVT26yrxnOQi13sfC0_qm4pcVTKr8_FxrsubOtzcVLyOvqLnzkUr_d3L9OHZP48e5zezBNHaLokzwtlqcwhNWwLNBqJOaX-UTLK52xB5S5lj9qjtQDO9ZqKgrVKc1CGhuLqkLsJ7fvWxy5btdvQ9CczRWqsU2WQegoPlAttjMGX2SZUNYddhpDtG8r-NNR71METe7Z58-E3-X_TN2v4Ze4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327542613</pqid></control><display><type>article</type><title>Dynamical Chaos in a Nonlinear System with 1/f Spectrum</title><source>SpringerNature Journals</source><creator>Koverda, V. P. ; Skokov, V. N.</creator><creatorcontrib>Koverda, V. P. ; Skokov, V. N.</creatorcontrib><description>A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/
f
spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/
f
behavior of the power spectra. The stochastic resonance and 1/
f
behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.</description><identifier>ISSN: 1063-7850</identifier><identifier>EISSN: 1090-6533</identifier><identifier>DOI: 10.1134/S1063785019110233</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Entropy (Information theory) ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear systems ; Physics ; Physics and Astronomy ; Power spectra ; Stochastic resonance</subject><ispartof>Technical physics letters, 2019-11, Vol.45 (11), p.1159-1162</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</citedby><cites>FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063785019110233$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063785019110233$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Koverda, V. P.</creatorcontrib><creatorcontrib>Skokov, V. N.</creatorcontrib><title>Dynamical Chaos in a Nonlinear System with 1/f Spectrum</title><title>Technical physics letters</title><addtitle>Tech. Phys. Lett</addtitle><description>A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/
f
spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/
f
behavior of the power spectra. The stochastic resonance and 1/
f
behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.</description><subject>Classical and Continuum Physics</subject><subject>Entropy (Information theory)</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power spectra</subject><subject>Stochastic resonance</subject><issn>1063-7850</issn><issn>1090-6533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFYfwNuC59iZney2e5SqVSh6qJ7DZLOxKU1Sd1Okb-Oz-GSmVPAgnuaH-f5_hl-IS4RrREpHCwRD44kGtIigiI7EAMFCYjTR8V4bSvb7U3EW4woAJkrbgbC3u4bryvFaTpfcRlk1kuVT26yrxnOQi13sfC0_qm4pcVTKr8_FxrsubOtzcVLyOvqLnzkUr_d3L9OHZP48e5zezBNHaLokzwtlqcwhNWwLNBqJOaX-UTLK52xB5S5lj9qjtQDO9ZqKgrVKc1CGhuLqkLsJ7fvWxy5btdvQ9CczRWqsU2WQegoPlAttjMGX2SZUNYddhpDtG8r-NNR71METe7Z58-E3-X_TN2v4Ze4</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Koverda, V. P.</creator><creator>Skokov, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Dynamical Chaos in a Nonlinear System with 1/f Spectrum</title><author>Koverda, V. P. ; Skokov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Continuum Physics</topic><topic>Entropy (Information theory)</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power spectra</topic><topic>Stochastic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koverda, V. P.</creatorcontrib><creatorcontrib>Skokov, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koverda, V. P.</au><au>Skokov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Chaos in a Nonlinear System with 1/f Spectrum</atitle><jtitle>Technical physics letters</jtitle><stitle>Tech. Phys. Lett</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>45</volume><issue>11</issue><spage>1159</spage><epage>1162</epage><pages>1159-1162</pages><issn>1063-7850</issn><eissn>1090-6533</eissn><abstract>A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/
f
spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/
f
behavior of the power spectra. The stochastic resonance and 1/
f
behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063785019110233</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7850 |
ispartof | Technical physics letters, 2019-11, Vol.45 (11), p.1159-1162 |
issn | 1063-7850 1090-6533 |
language | eng |
recordid | cdi_proquest_journals_2327542613 |
source | SpringerNature Journals |
subjects | Classical and Continuum Physics Entropy (Information theory) Mathematical analysis Nonlinear differential equations Nonlinear equations Nonlinear systems Physics Physics and Astronomy Power spectra Stochastic resonance |
title | Dynamical Chaos in a Nonlinear System with 1/f Spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Chaos%20in%20a%20Nonlinear%20System%20with%201/f%20%C2%A0Spectrum&rft.jtitle=Technical%20physics%20letters&rft.au=Koverda,%20V.%20P.&rft.date=2019-11-01&rft.volume=45&rft.issue=11&rft.spage=1159&rft.epage=1162&rft.pages=1159-1162&rft.issn=1063-7850&rft.eissn=1090-6533&rft_id=info:doi/10.1134/S1063785019110233&rft_dat=%3Cproquest_cross%3E2327542613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327542613&rft_id=info:pmid/&rfr_iscdi=true |