Dynamical Chaos in a Nonlinear System with 1/f  Spectrum

A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/ f spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/ f  behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technical physics letters 2019-11, Vol.45 (11), p.1159-1162
Hauptverfasser: Koverda, V. P., Skokov, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1162
container_issue 11
container_start_page 1159
container_title Technical physics letters
container_volume 45
creator Koverda, V. P.
Skokov, V. N.
description A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/ f spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/ f  behavior of the power spectra. The stochastic resonance and 1/ f  behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.
doi_str_mv 10.1134/S1063785019110233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327542613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327542613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYfwNuC59iZney2e5SqVSh6qJ7DZLOxKU1Sd1Okb-Oz-GSmVPAgnuaH-f5_hl-IS4RrREpHCwRD44kGtIigiI7EAMFCYjTR8V4bSvb7U3EW4woAJkrbgbC3u4bryvFaTpfcRlk1kuVT26yrxnOQi13sfC0_qm4pcVTKr8_FxrsubOtzcVLyOvqLnzkUr_d3L9OHZP48e5zezBNHaLokzwtlqcwhNWwLNBqJOaX-UTLK52xB5S5lj9qjtQDO9ZqKgrVKc1CGhuLqkLsJ7fvWxy5btdvQ9CczRWqsU2WQegoPlAttjMGX2SZUNYddhpDtG8r-NNR71METe7Z58-E3-X_TN2v4Ze4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327542613</pqid></control><display><type>article</type><title>Dynamical Chaos in a Nonlinear System with 1/f  Spectrum</title><source>SpringerNature Journals</source><creator>Koverda, V. P. ; Skokov, V. N.</creator><creatorcontrib>Koverda, V. P. ; Skokov, V. N.</creatorcontrib><description>A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/ f spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/ f  behavior of the power spectra. The stochastic resonance and 1/ f  behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.</description><identifier>ISSN: 1063-7850</identifier><identifier>EISSN: 1090-6533</identifier><identifier>DOI: 10.1134/S1063785019110233</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Entropy (Information theory) ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear systems ; Physics ; Physics and Astronomy ; Power spectra ; Stochastic resonance</subject><ispartof>Technical physics letters, 2019-11, Vol.45 (11), p.1159-1162</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</citedby><cites>FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063785019110233$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063785019110233$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Koverda, V. P.</creatorcontrib><creatorcontrib>Skokov, V. N.</creatorcontrib><title>Dynamical Chaos in a Nonlinear System with 1/f  Spectrum</title><title>Technical physics letters</title><addtitle>Tech. Phys. Lett</addtitle><description>A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/ f spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/ f  behavior of the power spectra. The stochastic resonance and 1/ f  behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.</description><subject>Classical and Continuum Physics</subject><subject>Entropy (Information theory)</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power spectra</subject><subject>Stochastic resonance</subject><issn>1063-7850</issn><issn>1090-6533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKw0AQhhdRsFYfwNuC59iZney2e5SqVSh6qJ7DZLOxKU1Sd1Okb-Oz-GSmVPAgnuaH-f5_hl-IS4RrREpHCwRD44kGtIigiI7EAMFCYjTR8V4bSvb7U3EW4woAJkrbgbC3u4bryvFaTpfcRlk1kuVT26yrxnOQi13sfC0_qm4pcVTKr8_FxrsubOtzcVLyOvqLnzkUr_d3L9OHZP48e5zezBNHaLokzwtlqcwhNWwLNBqJOaX-UTLK52xB5S5lj9qjtQDO9ZqKgrVKc1CGhuLqkLsJ7fvWxy5btdvQ9CczRWqsU2WQegoPlAttjMGX2SZUNYddhpDtG8r-NNR71METe7Z58-E3-X_TN2v4Ze4</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Koverda, V. P.</creator><creator>Skokov, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Dynamical Chaos in a Nonlinear System with 1/f  Spectrum</title><author>Koverda, V. P. ; Skokov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bbd293fb046a9d16513aa43501362eba902bc4ae15e19900ccae13dda524b0263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Continuum Physics</topic><topic>Entropy (Information theory)</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power spectra</topic><topic>Stochastic resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koverda, V. P.</creatorcontrib><creatorcontrib>Skokov, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koverda, V. P.</au><au>Skokov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Chaos in a Nonlinear System with 1/f  Spectrum</atitle><jtitle>Technical physics letters</jtitle><stitle>Tech. Phys. Lett</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>45</volume><issue>11</issue><spage>1159</spage><epage>1162</epage><pages>1159-1162</pages><issn>1063-7850</issn><eissn>1090-6533</eissn><abstract>A system of two nonlinear differential equations proposed for explaining the physical nature of the 1/ f spectra reveals the chaotization of trajectories under periodic external action in one of the system equations. This external noise leads to a stochastic resonance and low-frequency 1/ f  behavior of the power spectra. The stochastic resonance and 1/ f  behavior correspond to the maximum of information entropy, which is evidence of stability of the random process.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063785019110233</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7850
ispartof Technical physics letters, 2019-11, Vol.45 (11), p.1159-1162
issn 1063-7850
1090-6533
language eng
recordid cdi_proquest_journals_2327542613
source SpringerNature Journals
subjects Classical and Continuum Physics
Entropy (Information theory)
Mathematical analysis
Nonlinear differential equations
Nonlinear equations
Nonlinear systems
Physics
Physics and Astronomy
Power spectra
Stochastic resonance
title Dynamical Chaos in a Nonlinear System with 1/f  Spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Chaos%20in%20a%20Nonlinear%20System%20with%201/f%20%C2%A0Spectrum&rft.jtitle=Technical%20physics%20letters&rft.au=Koverda,%20V.%20P.&rft.date=2019-11-01&rft.volume=45&rft.issue=11&rft.spage=1159&rft.epage=1162&rft.pages=1159-1162&rft.issn=1063-7850&rft.eissn=1090-6533&rft_id=info:doi/10.1134/S1063785019110233&rft_dat=%3Cproquest_cross%3E2327542613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327542613&rft_id=info:pmid/&rfr_iscdi=true