Multi-Pose Face Recognition Using Pairwise Supervised Dictionary Learning
A major challenge in face recognition is handling large pose variations. Here, we proposed to tackle this challenge by a three step sparse representation based method: estimating the pose of an unseen non-frontal face image, generating its virtual frontal view using learned view-dependent dictionari...
Gespeichert in:
Veröffentlicht in: | Informatica (Vilnius, Lithuania) Lithuania), 2019-01, Vol.30 (4), p.647-670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major challenge in face recognition is handling large pose variations. Here, we proposed to tackle this challenge by a three step sparse representation based method: estimating the pose of an unseen non-frontal face image, generating its virtual frontal view using learned view-dependent dictionaries, and classifying the generated frontal view. It is assumed that for a specific identity, the representation coefficients based on the view dictionary are invariant to pose and view-dependent frontal view generation transformations are learned based on pair-wise supervised dictionary learning. Experiments conducted on FERET and CMU-PIE face databases depict the efficacy of the proposed method. |
---|---|
ISSN: | 0868-4952 1822-8844 |
DOI: | 10.15388/Informatica.2019.223 |