Active vibration control unit with a flywheel inertial actuator
This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2020-01, Vol.464, p.114987, Article 114987 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114987 |
container_title | Journal of sound and vibration |
container_volume | 464 |
creator | Kras, Aleksander Gardonio, Paolo |
description | This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure. |
doi_str_mv | 10.1016/j.jsv.2019.114987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327314394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X19305498</els_id><sourcerecordid>2327314394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLuA69aTSy_BhQyDNxhwo-AupGnCpNRmTNIO8_Z2GNeuzub_zvnPh9AtgZwAKe-7vItTToGInBAu6uoMLQiIIquLsj5HCwBKM17C1yW6irEDAMEZX6DHlU5uMnhyTVDJ-QFrP6TgezwOLuG9S1ussO0P-60xPXaDCcmpHiudRpV8uEYXVvXR3PzNJfp8fvpYv2ab95e39WqTaUaLlFWWKQ2lKjmztGWtKERDK1XaRtOiBmGrmlmrQZQN4aTQoiZQ26qxhlNCbcWW6O60dxf8z2hikp0fwzCflJTRihHO5oeWiJxSOvgYg7FyF9y3CgdJQB49yU7OnuTRkzx5mpmHE2Pm-pMzQUbtzKBN64LRSbbe_UP_AgJhcBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327314394</pqid></control><display><type>article</type><title>Active vibration control unit with a flywheel inertial actuator</title><source>Elsevier ScienceDirect Journals</source><creator>Kras, Aleksander ; Gardonio, Paolo</creator><creatorcontrib>Kras, Aleksander ; Gardonio, Paolo</creatorcontrib><description>This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2019.114987</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Active control ; Actuators ; Coils ; Control equipment ; Control stability ; Control systems ; Control theory ; Electromagnetic transducer ; Feedback control ; Feedback control systems ; Feedback loops ; Flywheels ; Inerter ; Inertia ; Inertial actuator ; Mechanical analysis ; Mechanical properties ; Proof mass actuator ; Rectangular plates ; Response functions ; Robust control ; Velocity feedback ; Vibration ; Vibration analysis ; Vibration control</subject><ispartof>Journal of sound and vibration, 2020-01, Vol.464, p.114987, Article 114987</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 6, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</citedby><cites>FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2019.114987$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kras, Aleksander</creatorcontrib><creatorcontrib>Gardonio, Paolo</creatorcontrib><title>Active vibration control unit with a flywheel inertial actuator</title><title>Journal of sound and vibration</title><description>This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.</description><subject>Active control</subject><subject>Actuators</subject><subject>Coils</subject><subject>Control equipment</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Electromagnetic transducer</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Feedback loops</subject><subject>Flywheels</subject><subject>Inerter</subject><subject>Inertia</subject><subject>Inertial actuator</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Proof mass actuator</subject><subject>Rectangular plates</subject><subject>Response functions</subject><subject>Robust control</subject><subject>Velocity feedback</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLuA69aTSy_BhQyDNxhwo-AupGnCpNRmTNIO8_Z2GNeuzub_zvnPh9AtgZwAKe-7vItTToGInBAu6uoMLQiIIquLsj5HCwBKM17C1yW6irEDAMEZX6DHlU5uMnhyTVDJ-QFrP6TgezwOLuG9S1ussO0P-60xPXaDCcmpHiudRpV8uEYXVvXR3PzNJfp8fvpYv2ab95e39WqTaUaLlFWWKQ2lKjmztGWtKERDK1XaRtOiBmGrmlmrQZQN4aTQoiZQ26qxhlNCbcWW6O60dxf8z2hikp0fwzCflJTRihHO5oeWiJxSOvgYg7FyF9y3CgdJQB49yU7OnuTRkzx5mpmHE2Pm-pMzQUbtzKBN64LRSbbe_UP_AgJhcBM</recordid><startdate>20200106</startdate><enddate>20200106</enddate><creator>Kras, Aleksander</creator><creator>Gardonio, Paolo</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200106</creationdate><title>Active vibration control unit with a flywheel inertial actuator</title><author>Kras, Aleksander ; Gardonio, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Coils</topic><topic>Control equipment</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Electromagnetic transducer</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Feedback loops</topic><topic>Flywheels</topic><topic>Inerter</topic><topic>Inertia</topic><topic>Inertial actuator</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Proof mass actuator</topic><topic>Rectangular plates</topic><topic>Response functions</topic><topic>Robust control</topic><topic>Velocity feedback</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kras, Aleksander</creatorcontrib><creatorcontrib>Gardonio, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kras, Aleksander</au><au>Gardonio, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active vibration control unit with a flywheel inertial actuator</atitle><jtitle>Journal of sound and vibration</jtitle><date>2020-01-06</date><risdate>2020</risdate><volume>464</volume><spage>114987</spage><pages>114987-</pages><artnum>114987</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2019.114987</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2020-01, Vol.464, p.114987, Article 114987 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2327314394 |
source | Elsevier ScienceDirect Journals |
subjects | Active control Actuators Coils Control equipment Control stability Control systems Control theory Electromagnetic transducer Feedback control Feedback control systems Feedback loops Flywheels Inerter Inertia Inertial actuator Mechanical analysis Mechanical properties Proof mass actuator Rectangular plates Response functions Robust control Velocity feedback Vibration Vibration analysis Vibration control |
title | Active vibration control unit with a flywheel inertial actuator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20vibration%20control%20unit%20with%20a%20flywheel%20inertial%20actuator&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kras,%20Aleksander&rft.date=2020-01-06&rft.volume=464&rft.spage=114987&rft.pages=114987-&rft.artnum=114987&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2019.114987&rft_dat=%3Cproquest_cross%3E2327314394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327314394&rft_id=info:pmid/&rft_els_id=S0022460X19305498&rfr_iscdi=true |