Active vibration control unit with a flywheel inertial actuator

This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2020-01, Vol.464, p.114987, Article 114987
Hauptverfasser: Kras, Aleksander, Gardonio, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114987
container_title Journal of sound and vibration
container_volume 464
creator Kras, Aleksander
Gardonio, Paolo
description This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.
doi_str_mv 10.1016/j.jsv.2019.114987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327314394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X19305498</els_id><sourcerecordid>2327314394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLuA69aTSy_BhQyDNxhwo-AupGnCpNRmTNIO8_Z2GNeuzub_zvnPh9AtgZwAKe-7vItTToGInBAu6uoMLQiIIquLsj5HCwBKM17C1yW6irEDAMEZX6DHlU5uMnhyTVDJ-QFrP6TgezwOLuG9S1ussO0P-60xPXaDCcmpHiudRpV8uEYXVvXR3PzNJfp8fvpYv2ab95e39WqTaUaLlFWWKQ2lKjmztGWtKERDK1XaRtOiBmGrmlmrQZQN4aTQoiZQ26qxhlNCbcWW6O60dxf8z2hikp0fwzCflJTRihHO5oeWiJxSOvgYg7FyF9y3CgdJQB49yU7OnuTRkzx5mpmHE2Pm-pMzQUbtzKBN64LRSbbe_UP_AgJhcBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327314394</pqid></control><display><type>article</type><title>Active vibration control unit with a flywheel inertial actuator</title><source>Elsevier ScienceDirect Journals</source><creator>Kras, Aleksander ; Gardonio, Paolo</creator><creatorcontrib>Kras, Aleksander ; Gardonio, Paolo</creatorcontrib><description>This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2019.114987</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Active control ; Actuators ; Coils ; Control equipment ; Control stability ; Control systems ; Control theory ; Electromagnetic transducer ; Feedback control ; Feedback control systems ; Feedback loops ; Flywheels ; Inerter ; Inertia ; Inertial actuator ; Mechanical analysis ; Mechanical properties ; Proof mass actuator ; Rectangular plates ; Response functions ; Robust control ; Velocity feedback ; Vibration ; Vibration analysis ; Vibration control</subject><ispartof>Journal of sound and vibration, 2020-01, Vol.464, p.114987, Article 114987</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 6, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</citedby><cites>FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2019.114987$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kras, Aleksander</creatorcontrib><creatorcontrib>Gardonio, Paolo</creatorcontrib><title>Active vibration control unit with a flywheel inertial actuator</title><title>Journal of sound and vibration</title><description>This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.</description><subject>Active control</subject><subject>Actuators</subject><subject>Coils</subject><subject>Control equipment</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Electromagnetic transducer</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Feedback loops</subject><subject>Flywheels</subject><subject>Inerter</subject><subject>Inertia</subject><subject>Inertial actuator</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Proof mass actuator</subject><subject>Rectangular plates</subject><subject>Response functions</subject><subject>Robust control</subject><subject>Velocity feedback</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLuA69aTSy_BhQyDNxhwo-AupGnCpNRmTNIO8_Z2GNeuzub_zvnPh9AtgZwAKe-7vItTToGInBAu6uoMLQiIIquLsj5HCwBKM17C1yW6irEDAMEZX6DHlU5uMnhyTVDJ-QFrP6TgezwOLuG9S1ussO0P-60xPXaDCcmpHiudRpV8uEYXVvXR3PzNJfp8fvpYv2ab95e39WqTaUaLlFWWKQ2lKjmztGWtKERDK1XaRtOiBmGrmlmrQZQN4aTQoiZQ26qxhlNCbcWW6O60dxf8z2hikp0fwzCflJTRihHO5oeWiJxSOvgYg7FyF9y3CgdJQB49yU7OnuTRkzx5mpmHE2Pm-pMzQUbtzKBN64LRSbbe_UP_AgJhcBM</recordid><startdate>20200106</startdate><enddate>20200106</enddate><creator>Kras, Aleksander</creator><creator>Gardonio, Paolo</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200106</creationdate><title>Active vibration control unit with a flywheel inertial actuator</title><author>Kras, Aleksander ; Gardonio, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7f3ac06a643f2d3d959b27a6fbc25809f783ffc096b1415c98108f7bfe4212f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Coils</topic><topic>Control equipment</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Electromagnetic transducer</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Feedback loops</topic><topic>Flywheels</topic><topic>Inerter</topic><topic>Inertia</topic><topic>Inertial actuator</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Proof mass actuator</topic><topic>Rectangular plates</topic><topic>Response functions</topic><topic>Robust control</topic><topic>Velocity feedback</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kras, Aleksander</creatorcontrib><creatorcontrib>Gardonio, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kras, Aleksander</au><au>Gardonio, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active vibration control unit with a flywheel inertial actuator</atitle><jtitle>Journal of sound and vibration</jtitle><date>2020-01-06</date><risdate>2020</risdate><volume>464</volume><spage>114987</spage><pages>114987-</pages><artnum>114987</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2019.114987</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2020-01, Vol.464, p.114987, Article 114987
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2327314394
source Elsevier ScienceDirect Journals
subjects Active control
Actuators
Coils
Control equipment
Control stability
Control systems
Control theory
Electromagnetic transducer
Feedback control
Feedback control systems
Feedback loops
Flywheels
Inerter
Inertia
Inertial actuator
Mechanical analysis
Mechanical properties
Proof mass actuator
Rectangular plates
Response functions
Robust control
Velocity feedback
Vibration
Vibration analysis
Vibration control
title Active vibration control unit with a flywheel inertial actuator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20vibration%20control%20unit%20with%20a%20flywheel%20inertial%20actuator&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Kras,%20Aleksander&rft.date=2020-01-06&rft.volume=464&rft.spage=114987&rft.pages=114987-&rft.artnum=114987&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2019.114987&rft_dat=%3Cproquest_cross%3E2327314394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327314394&rft_id=info:pmid/&rft_els_id=S0022460X19305498&rfr_iscdi=true