The recovery properties under load of a shape memory polymer composite material

In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materialwissenschaft und Werkstofftechnik 2019-12, Vol.50 (12), p.1555-1559
Hauptverfasser: Basit, A., L'Hostis, G., Durand, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1559
container_issue 12
container_start_page 1555
container_title Materialwissenschaft und Werkstofftechnik
container_volume 50
creator Basit, A.
L'Hostis, G.
Durand, B.
description In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.
doi_str_mv 10.1002/mawe.201700117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327235296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327235296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTrmz45iMVVU-JFCXIkbLSc5qqqQOdkuVf0-iIhiZbnif5-70MnaLMEMAcd_aI80EoAZA1GdsgkpgkoIS52wCuZSJQqkv2VWMWwDIc60mbLXeEA9U-i8KPe-C7yjsa4r8sKso8MbbinvHLY8b2xFvqfUj55u-HeLSt52P9X4I7J5CbZtrduFsE-nmZ07Z--NyvXhOXldPL4v5a1JK1DoRoDOR2SpT6FLUOVrlskxUoNIHKkVZKCddZkvpNMpCF4XTIBymWDirQGRyyu5Oe4eXPw8U92brD2E3nDRCCi2kEvlIzU5UGXyMgZzpQt3a0BsEM5ZmxtLMb2mDkJ-EY91Q_w9t3uYfyz_3GyXqcLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327235296</pqid></control><display><type>article</type><title>The recovery properties under load of a shape memory polymer composite material</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Basit, A. ; L'Hostis, G. ; Durand, B.</creator><creatorcontrib>Basit, A. ; L'Hostis, G. ; Durand, B.</creatorcontrib><description>In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.</description><identifier>ISSN: 0933-5137</identifier><identifier>EISSN: 1521-4052</identifier><identifier>DOI: 10.1002/mawe.201700117</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biodegradable materials ; Composite materials ; Deformation ; Formgedächtnis-Verbundwerkstoff ; Glass transition temperature ; Heating ; Last ; Load ; Melt temperature ; Polymer ; Polymer matrix composites ; Polymers ; Recovery ; Rückstellung ; Shape memory alloys ; shape memory composite ; Temperature ; thermo-mechanical ; thermomechanisch</subject><ispartof>Materialwissenschaft und Werkstofftechnik, 2019-12, Vol.50 (12), p.1555-1559</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</citedby><cites>FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1411,27901,27902</link.rule.ids></links><search><creatorcontrib>Basit, A.</creatorcontrib><creatorcontrib>L'Hostis, G.</creatorcontrib><creatorcontrib>Durand, B.</creatorcontrib><title>The recovery properties under load of a shape memory polymer composite material</title><title>Materialwissenschaft und Werkstofftechnik</title><description>In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.</description><subject>Biodegradable materials</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Formgedächtnis-Verbundwerkstoff</subject><subject>Glass transition temperature</subject><subject>Heating</subject><subject>Last</subject><subject>Load</subject><subject>Melt temperature</subject><subject>Polymer</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Recovery</subject><subject>Rückstellung</subject><subject>Shape memory alloys</subject><subject>shape memory composite</subject><subject>Temperature</subject><subject>thermo-mechanical</subject><subject>thermomechanisch</subject><issn>0933-5137</issn><issn>1521-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTrmz45iMVVU-JFCXIkbLSc5qqqQOdkuVf0-iIhiZbnif5-70MnaLMEMAcd_aI80EoAZA1GdsgkpgkoIS52wCuZSJQqkv2VWMWwDIc60mbLXeEA9U-i8KPe-C7yjsa4r8sKso8MbbinvHLY8b2xFvqfUj55u-HeLSt52P9X4I7J5CbZtrduFsE-nmZ07Z--NyvXhOXldPL4v5a1JK1DoRoDOR2SpT6FLUOVrlskxUoNIHKkVZKCddZkvpNMpCF4XTIBymWDirQGRyyu5Oe4eXPw8U92brD2E3nDRCCi2kEvlIzU5UGXyMgZzpQt3a0BsEM5ZmxtLMb2mDkJ-EY91Q_w9t3uYfyz_3GyXqcLI</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Basit, A.</creator><creator>L'Hostis, G.</creator><creator>Durand, B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201912</creationdate><title>The recovery properties under load of a shape memory polymer composite material</title><author>Basit, A. ; L'Hostis, G. ; Durand, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biodegradable materials</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Formgedächtnis-Verbundwerkstoff</topic><topic>Glass transition temperature</topic><topic>Heating</topic><topic>Last</topic><topic>Load</topic><topic>Melt temperature</topic><topic>Polymer</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Recovery</topic><topic>Rückstellung</topic><topic>Shape memory alloys</topic><topic>shape memory composite</topic><topic>Temperature</topic><topic>thermo-mechanical</topic><topic>thermomechanisch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basit, A.</creatorcontrib><creatorcontrib>L'Hostis, G.</creatorcontrib><creatorcontrib>Durand, B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Materialwissenschaft und Werkstofftechnik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basit, A.</au><au>L'Hostis, G.</au><au>Durand, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The recovery properties under load of a shape memory polymer composite material</atitle><jtitle>Materialwissenschaft und Werkstofftechnik</jtitle><date>2019-12</date><risdate>2019</risdate><volume>50</volume><issue>12</issue><spage>1555</spage><epage>1559</epage><pages>1555-1559</pages><issn>0933-5137</issn><eissn>1521-4052</eissn><abstract>In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mawe.201700117</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-5137
ispartof Materialwissenschaft und Werkstofftechnik, 2019-12, Vol.50 (12), p.1555-1559
issn 0933-5137
1521-4052
language eng
recordid cdi_proquest_journals_2327235296
source Wiley Online Library Journals Frontfile Complete
subjects Biodegradable materials
Composite materials
Deformation
Formgedächtnis-Verbundwerkstoff
Glass transition temperature
Heating
Last
Load
Melt temperature
Polymer
Polymer matrix composites
Polymers
Recovery
Rückstellung
Shape memory alloys
shape memory composite
Temperature
thermo-mechanical
thermomechanisch
title The recovery properties under load of a shape memory polymer composite material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20recovery%20properties%20under%20load%20of%20a%20shape%20memory%20polymer%20composite%20material&rft.jtitle=Materialwissenschaft%20und%20Werkstofftechnik&rft.au=Basit,%20A.&rft.date=2019-12&rft.volume=50&rft.issue=12&rft.spage=1555&rft.epage=1559&rft.pages=1555-1559&rft.issn=0933-5137&rft.eissn=1521-4052&rft_id=info:doi/10.1002/mawe.201700117&rft_dat=%3Cproquest_cross%3E2327235296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327235296&rft_id=info:pmid/&rfr_iscdi=true