The recovery properties under load of a shape memory polymer composite material
In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recove...
Gespeichert in:
Veröffentlicht in: | Materialwissenschaft und Werkstofftechnik 2019-12, Vol.50 (12), p.1555-1559 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1559 |
---|---|
container_issue | 12 |
container_start_page | 1555 |
container_title | Materialwissenschaft und Werkstofftechnik |
container_volume | 50 |
creator | Basit, A. L'Hostis, G. Durand, B. |
description | In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications. |
doi_str_mv | 10.1002/mawe.201700117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327235296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327235296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTrmz45iMVVU-JFCXIkbLSc5qqqQOdkuVf0-iIhiZbnif5-70MnaLMEMAcd_aI80EoAZA1GdsgkpgkoIS52wCuZSJQqkv2VWMWwDIc60mbLXeEA9U-i8KPe-C7yjsa4r8sKso8MbbinvHLY8b2xFvqfUj55u-HeLSt52P9X4I7J5CbZtrduFsE-nmZ07Z--NyvXhOXldPL4v5a1JK1DoRoDOR2SpT6FLUOVrlskxUoNIHKkVZKCddZkvpNMpCF4XTIBymWDirQGRyyu5Oe4eXPw8U92brD2E3nDRCCi2kEvlIzU5UGXyMgZzpQt3a0BsEM5ZmxtLMb2mDkJ-EY91Q_w9t3uYfyz_3GyXqcLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327235296</pqid></control><display><type>article</type><title>The recovery properties under load of a shape memory polymer composite material</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Basit, A. ; L'Hostis, G. ; Durand, B.</creator><creatorcontrib>Basit, A. ; L'Hostis, G. ; Durand, B.</creatorcontrib><description>In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.</description><identifier>ISSN: 0933-5137</identifier><identifier>EISSN: 1521-4052</identifier><identifier>DOI: 10.1002/mawe.201700117</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biodegradable materials ; Composite materials ; Deformation ; Formgedächtnis-Verbundwerkstoff ; Glass transition temperature ; Heating ; Last ; Load ; Melt temperature ; Polymer ; Polymer matrix composites ; Polymers ; Recovery ; Rückstellung ; Shape memory alloys ; shape memory composite ; Temperature ; thermo-mechanical ; thermomechanisch</subject><ispartof>Materialwissenschaft und Werkstofftechnik, 2019-12, Vol.50 (12), p.1555-1559</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</citedby><cites>FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1411,27901,27902</link.rule.ids></links><search><creatorcontrib>Basit, A.</creatorcontrib><creatorcontrib>L'Hostis, G.</creatorcontrib><creatorcontrib>Durand, B.</creatorcontrib><title>The recovery properties under load of a shape memory polymer composite material</title><title>Materialwissenschaft und Werkstofftechnik</title><description>In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.</description><subject>Biodegradable materials</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Formgedächtnis-Verbundwerkstoff</subject><subject>Glass transition temperature</subject><subject>Heating</subject><subject>Last</subject><subject>Load</subject><subject>Melt temperature</subject><subject>Polymer</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Recovery</subject><subject>Rückstellung</subject><subject>Shape memory alloys</subject><subject>shape memory composite</subject><subject>Temperature</subject><subject>thermo-mechanical</subject><subject>thermomechanisch</subject><issn>0933-5137</issn><issn>1521-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTrmz45iMVVU-JFCXIkbLSc5qqqQOdkuVf0-iIhiZbnif5-70MnaLMEMAcd_aI80EoAZA1GdsgkpgkoIS52wCuZSJQqkv2VWMWwDIc60mbLXeEA9U-i8KPe-C7yjsa4r8sKso8MbbinvHLY8b2xFvqfUj55u-HeLSt52P9X4I7J5CbZtrduFsE-nmZ07Z--NyvXhOXldPL4v5a1JK1DoRoDOR2SpT6FLUOVrlskxUoNIHKkVZKCddZkvpNMpCF4XTIBymWDirQGRyyu5Oe4eXPw8U92brD2E3nDRCCi2kEvlIzU5UGXyMgZzpQt3a0BsEM5ZmxtLMb2mDkJ-EY91Q_w9t3uYfyz_3GyXqcLI</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Basit, A.</creator><creator>L'Hostis, G.</creator><creator>Durand, B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201912</creationdate><title>The recovery properties under load of a shape memory polymer composite material</title><author>Basit, A. ; L'Hostis, G. ; Durand, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-207626ad651f41791a5f662d0548ec2cb5f3f6ac3f713b7bbf702f141bfa50263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biodegradable materials</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Formgedächtnis-Verbundwerkstoff</topic><topic>Glass transition temperature</topic><topic>Heating</topic><topic>Last</topic><topic>Load</topic><topic>Melt temperature</topic><topic>Polymer</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Recovery</topic><topic>Rückstellung</topic><topic>Shape memory alloys</topic><topic>shape memory composite</topic><topic>Temperature</topic><topic>thermo-mechanical</topic><topic>thermomechanisch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basit, A.</creatorcontrib><creatorcontrib>L'Hostis, G.</creatorcontrib><creatorcontrib>Durand, B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Materialwissenschaft und Werkstofftechnik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basit, A.</au><au>L'Hostis, G.</au><au>Durand, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The recovery properties under load of a shape memory polymer composite material</atitle><jtitle>Materialwissenschaft und Werkstofftechnik</jtitle><date>2019-12</date><risdate>2019</risdate><volume>50</volume><issue>12</issue><spage>1555</spage><epage>1559</epage><pages>1555-1559</pages><issn>0933-5137</issn><eissn>1521-4052</eissn><abstract>In many applications, shape memory alloys are being replaced by shape memory polymers as they have some better properties than shape memory alloys. Nevertheless, shape memory alloys can recover under load which shape memory polymers cannot. Shape memory polymers are not capable of giving full recovery even lifting a tiny load. The melting temperature or the glass transition temperature is the transition temperatures to which shape memory polymers are closely heated. Then a deforming force up to a certain position is applied to the heated shape memory polymers. After that shape memory polymer is permitted to cool while keeping it deformed. After the cooling, shape memory polymer obtains the temporary shape which can be recovered by reheating it at the similar transition temperature (glass transition or melting). Consequently, it recovers at its initial state. Shape memory polymer can achieve constrained recovery and unconstrained recovery, nonetheless; under stress, it is partly recovered. In current work, recovery under load has been investigated of an asymmetrical shape memory composite. It is established that it is capable to recover under various loads. Under various loads, it shows full recovery in reference to initial state. The ability to recover under load can be potentially used in diverse applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mawe.201700117</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-5137 |
ispartof | Materialwissenschaft und Werkstofftechnik, 2019-12, Vol.50 (12), p.1555-1559 |
issn | 0933-5137 1521-4052 |
language | eng |
recordid | cdi_proquest_journals_2327235296 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biodegradable materials Composite materials Deformation Formgedächtnis-Verbundwerkstoff Glass transition temperature Heating Last Load Melt temperature Polymer Polymer matrix composites Polymers Recovery Rückstellung Shape memory alloys shape memory composite Temperature thermo-mechanical thermomechanisch |
title | The recovery properties under load of a shape memory polymer composite material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20recovery%20properties%20under%20load%20of%20a%20shape%20memory%20polymer%20composite%20material&rft.jtitle=Materialwissenschaft%20und%20Werkstofftechnik&rft.au=Basit,%20A.&rft.date=2019-12&rft.volume=50&rft.issue=12&rft.spage=1555&rft.epage=1559&rft.pages=1555-1559&rft.issn=0933-5137&rft.eissn=1521-4052&rft_id=info:doi/10.1002/mawe.201700117&rft_dat=%3Cproquest_cross%3E2327235296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327235296&rft_id=info:pmid/&rfr_iscdi=true |