Shock waves in a rotating non-Maxwellian magnetized dusty plasma

A theoretical model is presented to study characteristics of dust acoustic shock in a viscous, magnetized and rotating dusty plasma at both fast and slow time scales. By employing reductive perturbation technique the nonlinear Zakharov--Kuznetsov (ZK) equation has been derived for both cases when du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Zahida Ehsan, Abbasi, M M, Ghosh, Samiran, Khan, Majid, Muddasir Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zahida Ehsan
Abbasi, M M
Ghosh, Samiran
Khan, Majid
Muddasir Ali
description A theoretical model is presented to study characteristics of dust acoustic shock in a viscous, magnetized and rotating dusty plasma at both fast and slow time scales. By employing reductive perturbation technique the nonlinear Zakharov--Kuznetsov (ZK) equation has been derived for both cases when dust is inactive and dynamic (fast and slow time scales). Both electrons and ions are considered to follow kappa/Cairns distribution. It is observed that the viscosity in both cases when dust is in background and active plays as a key role in dissipation for the propagation of acoustic shock. Magnetic field and rotation are responsible for the dispersive term. Superthermality has been found to affect significantly on the formation of shock wave along with viscous nature of plasma. The present investigation may be beneficial to understanding the rotating plasma in particular experiments being carried out.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2327143692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327143692</sourcerecordid><originalsourceid>FETCH-proquest_journals_23271436923</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLrQ3_dFNEMXFSXe52FhT06T2plZ9eh18AKczfGckApQyiRYp4kSEzHUcx5gXmGUyEKvD1Z1vMNBDMWgLBJ3z5LWtwDob7ek5KGM0WWiossrrtyqh7Nm_oDXEDc3E-EKGVfjrVMy3m-N6F7Wdu_eK_al2fWe_dEKJRZLKfInyv-sDQ685Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327143692</pqid></control><display><type>article</type><title>Shock waves in a rotating non-Maxwellian magnetized dusty plasma</title><source>Free E- Journals</source><creator>Zahida Ehsan ; Abbasi, M M ; Ghosh, Samiran ; Khan, Majid ; Muddasir Ali</creator><creatorcontrib>Zahida Ehsan ; Abbasi, M M ; Ghosh, Samiran ; Khan, Majid ; Muddasir Ali</creatorcontrib><description>A theoretical model is presented to study characteristics of dust acoustic shock in a viscous, magnetized and rotating dusty plasma at both fast and slow time scales. By employing reductive perturbation technique the nonlinear Zakharov--Kuznetsov (ZK) equation has been derived for both cases when dust is inactive and dynamic (fast and slow time scales). Both electrons and ions are considered to follow kappa/Cairns distribution. It is observed that the viscosity in both cases when dust is in background and active plays as a key role in dissipation for the propagation of acoustic shock. Magnetic field and rotation are responsible for the dispersive term. Superthermality has been found to affect significantly on the formation of shock wave along with viscous nature of plasma. The present investigation may be beneficial to understanding the rotating plasma in particular experiments being carried out.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acoustic propagation ; Acoustic waves ; Dust ; Dusty plasmas ; Perturbation methods ; Plasma ; Rotating plasmas ; Rotation ; Shock waves</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Zahida Ehsan</creatorcontrib><creatorcontrib>Abbasi, M M</creatorcontrib><creatorcontrib>Ghosh, Samiran</creatorcontrib><creatorcontrib>Khan, Majid</creatorcontrib><creatorcontrib>Muddasir Ali</creatorcontrib><title>Shock waves in a rotating non-Maxwellian magnetized dusty plasma</title><title>arXiv.org</title><description>A theoretical model is presented to study characteristics of dust acoustic shock in a viscous, magnetized and rotating dusty plasma at both fast and slow time scales. By employing reductive perturbation technique the nonlinear Zakharov--Kuznetsov (ZK) equation has been derived for both cases when dust is inactive and dynamic (fast and slow time scales). Both electrons and ions are considered to follow kappa/Cairns distribution. It is observed that the viscosity in both cases when dust is in background and active plays as a key role in dissipation for the propagation of acoustic shock. Magnetic field and rotation are responsible for the dispersive term. Superthermality has been found to affect significantly on the formation of shock wave along with viscous nature of plasma. The present investigation may be beneficial to understanding the rotating plasma in particular experiments being carried out.</description><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>Dust</subject><subject>Dusty plasmas</subject><subject>Perturbation methods</subject><subject>Plasma</subject><subject>Rotating plasmas</subject><subject>Rotation</subject><subject>Shock waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLrQ3_dFNEMXFSXe52FhT06T2plZ9eh18AKczfGckApQyiRYp4kSEzHUcx5gXmGUyEKvD1Z1vMNBDMWgLBJ3z5LWtwDob7ek5KGM0WWiossrrtyqh7Nm_oDXEDc3E-EKGVfjrVMy3m-N6F7Wdu_eK_al2fWe_dEKJRZLKfInyv-sDQ685Og</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Zahida Ehsan</creator><creator>Abbasi, M M</creator><creator>Ghosh, Samiran</creator><creator>Khan, Majid</creator><creator>Muddasir Ali</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200227</creationdate><title>Shock waves in a rotating non-Maxwellian magnetized dusty plasma</title><author>Zahida Ehsan ; Abbasi, M M ; Ghosh, Samiran ; Khan, Majid ; Muddasir Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23271436923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>Dust</topic><topic>Dusty plasmas</topic><topic>Perturbation methods</topic><topic>Plasma</topic><topic>Rotating plasmas</topic><topic>Rotation</topic><topic>Shock waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Zahida Ehsan</creatorcontrib><creatorcontrib>Abbasi, M M</creatorcontrib><creatorcontrib>Ghosh, Samiran</creatorcontrib><creatorcontrib>Khan, Majid</creatorcontrib><creatorcontrib>Muddasir Ali</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahida Ehsan</au><au>Abbasi, M M</au><au>Ghosh, Samiran</au><au>Khan, Majid</au><au>Muddasir Ali</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shock waves in a rotating non-Maxwellian magnetized dusty plasma</atitle><jtitle>arXiv.org</jtitle><date>2020-02-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>A theoretical model is presented to study characteristics of dust acoustic shock in a viscous, magnetized and rotating dusty plasma at both fast and slow time scales. By employing reductive perturbation technique the nonlinear Zakharov--Kuznetsov (ZK) equation has been derived for both cases when dust is inactive and dynamic (fast and slow time scales). Both electrons and ions are considered to follow kappa/Cairns distribution. It is observed that the viscosity in both cases when dust is in background and active plays as a key role in dissipation for the propagation of acoustic shock. Magnetic field and rotation are responsible for the dispersive term. Superthermality has been found to affect significantly on the formation of shock wave along with viscous nature of plasma. The present investigation may be beneficial to understanding the rotating plasma in particular experiments being carried out.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2327143692
source Free E- Journals
subjects Acoustic propagation
Acoustic waves
Dust
Dusty plasmas
Perturbation methods
Plasma
Rotating plasmas
Rotation
Shock waves
title Shock waves in a rotating non-Maxwellian magnetized dusty plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shock%20waves%20in%20a%20rotating%20non-Maxwellian%20magnetized%20dusty%20plasma&rft.jtitle=arXiv.org&rft.au=Zahida%20Ehsan&rft.date=2020-02-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2327143692%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327143692&rft_id=info:pmid/&rfr_iscdi=true