The Metagenomic Binning Problem: Clustering Markov Sequences

The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Greenberg, G, Shomorony, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Greenberg, G
Shomorony, I
description The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where M
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2325614267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325614267</sourcerecordid><originalsourceid>FETCH-proquest_journals_23256142673</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCclIVfBNLUlMT83Lz81MVnDKzMvLzEtXCCjKT8pJzbVScM4pLS5JLQKJ-SYWZeeXKQSnFpam5iWnFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqJ8oJLikvis_NKiPKBUvJGxkamZoQnQXmPiVAEAH9E3Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325614267</pqid></control><display><type>article</type><title>The Metagenomic Binning Problem: Clustering Markov Sequences</title><source>Free E- Journals</source><creator>Greenberg, G ; Shomorony, I</creator><creatorcontrib>Greenberg, G ; Shomorony, I</creatorcontrib><description>The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where M&lt;&lt;N. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Euclidean geometry ; Genomes ; Information theory ; Markov analysis ; Markov processes ; Microorganisms</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Greenberg, G</creatorcontrib><creatorcontrib>Shomorony, I</creatorcontrib><title>The Metagenomic Binning Problem: Clustering Markov Sequences</title><title>arXiv.org</title><description>The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where M&lt;&lt;N. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.</description><subject>Clustering</subject><subject>Euclidean geometry</subject><subject>Genomes</subject><subject>Information theory</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Microorganisms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCclIVfBNLUlMT83Lz81MVnDKzMvLzEtXCCjKT8pJzbVScM4pLS5JLQKJ-SYWZeeXKQSnFpam5iWnFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqJ8oJLikvis_NKiPKBUvJGxkamZoQnQXmPiVAEAH9E3Yw</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Greenberg, G</creator><creator>Shomorony, I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191212</creationdate><title>The Metagenomic Binning Problem: Clustering Markov Sequences</title><author>Greenberg, G ; Shomorony, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23256142673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clustering</topic><topic>Euclidean geometry</topic><topic>Genomes</topic><topic>Information theory</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Microorganisms</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenberg, G</creatorcontrib><creatorcontrib>Shomorony, I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenberg, G</au><au>Shomorony, I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Metagenomic Binning Problem: Clustering Markov Sequences</atitle><jtitle>arXiv.org</jtitle><date>2019-12-12</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where M&lt;&lt;N. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2325614267
source Free E- Journals
subjects Clustering
Euclidean geometry
Genomes
Information theory
Markov analysis
Markov processes
Microorganisms
title The Metagenomic Binning Problem: Clustering Markov Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Metagenomic%20Binning%20Problem:%20Clustering%20Markov%20Sequences&rft.jtitle=arXiv.org&rft.au=Greenberg,%20G&rft.date=2019-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2325614267%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325614267&rft_id=info:pmid/&rfr_iscdi=true