Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits
The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we use...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2019-12, Vol.234, p.111362, Article 111362 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111362 |
container_title | Remote sensing of environment |
container_volume | 234 |
creator | Pacheco-Labrador, Javier Perez-Priego, Oscar El-Madany, Tarek S. Julitta, Tommaso Rossini, Micol Guan, Jinhong Moreno, Gerardo Carvalhais, Nuno Martín, M. Pilar Gonzalez-Cascon, Rosario Kolle, Olaf Reischtein, Markus van der Tol, Christiaan Carrara, Arnaud Martini, David Hammer, Tiana W. Moossen, Heiko Migliavacca, Mirco |
description | The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation.
The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken.
•Novel SCOPE model inversion approach provides reliable plant functional traits.•GPP results a better constraint of plant functional traits than monochromatic SIF.•Retrieve |
doi_str_mv | 10.1016/j.rse.2019.111362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2325287196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425719303815</els_id><sourcerecordid>2325287196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-f335b67babfb87c909620d2955154c450b594ce0ae97c54dd9fdf8f16926c1293</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVooNtNH6A3Qc92JdmyLXoqy2Yb2JCFtGchy6NEiyO5krwQ6MNXrnPOaWD4_n-GD6EvlJSU0ObbuQwRSkaoKCmlVcOu0IZ2rShIS-oPaENIVRc14-1H9CnGMyGUdy3doL_385jsNEKhvYspKOsStu4CIVrvsDf4cfdw2pd4f1HjrJJ1Tzg9A558ApesGhfkcDph5Qb8eHeLjQ__gQApWLiswDSqXGtmp1NuzbvlUIo36NqoMcLnt7lFv2_3v3Y_i-PD4W7341joumOpMFXF-6btVW_6rtWCiIaRgQnOKa91zUnPRa2BKBCt5vUwCDOYztBGsEZTJqot-rr2TsH_mSEmefZzyH9EySrGWTYhmkzRldLBxxjAyCnYFxVeJSVykSzPMkuWi2S5Ss6Z72sG8vsXC0FGbcFpGGwAneTg7Tvpfzo9hQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325287196</pqid></control><display><type>article</type><title>Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits</title><source>Elsevier ScienceDirect Journals</source><creator>Pacheco-Labrador, Javier ; Perez-Priego, Oscar ; El-Madany, Tarek S. ; Julitta, Tommaso ; Rossini, Micol ; Guan, Jinhong ; Moreno, Gerardo ; Carvalhais, Nuno ; Martín, M. Pilar ; Gonzalez-Cascon, Rosario ; Kolle, Olaf ; Reischtein, Markus ; van der Tol, Christiaan ; Carrara, Arnaud ; Martini, David ; Hammer, Tiana W. ; Moossen, Heiko ; Migliavacca, Mirco</creator><creatorcontrib>Pacheco-Labrador, Javier ; Perez-Priego, Oscar ; El-Madany, Tarek S. ; Julitta, Tommaso ; Rossini, Micol ; Guan, Jinhong ; Moreno, Gerardo ; Carvalhais, Nuno ; Martín, M. Pilar ; Gonzalez-Cascon, Rosario ; Kolle, Olaf ; Reischtein, Markus ; van der Tol, Christiaan ; Carrara, Arnaud ; Martini, David ; Hammer, Tiana W. ; Moossen, Heiko ; Migliavacca, Mirco</creatorcontrib><description>The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation.
The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken.
•Novel SCOPE model inversion approach provides reliable plant functional traits.•GPP results a better constraint of plant functional traits than monochromatic SIF.•Retrieved parameters respond to spatial, temporal and nutrient-induced variability.•Vcmax and Ball-Berry slope evaluated against leaf nitrogen and evaporative fraction.•Pattern-oriented model evaluation enhances model and inversion performance analysis.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2019.111362</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Atmospheric models ; Carbon dioxide ; Carbon dioxide flux ; Carboxylation ; Chlorophyll ; Constraint modelling ; Covariance ; Eddy covariance ; Estimates ; Fertilization ; Fluorescence ; Fruits ; GPP ; Grasslands ; Heat flux ; Heat transfer ; Hyperspectral ; Imagery ; Inversion ; Land surface models ; Leaf area ; Leaf area index ; Leaves ; Mediterranean grassland ; Nitrogen content ; Nutrient availability ; Parameter estimation ; Parameter sensitivity ; Photosynthesis ; Plant functional traits ; Primary production ; Radiance ; Radiative transfer ; Radiative transfer models ; Reflectance ; Remote sensing ; Retrieval ; SCOPE inversion ; Seasonal variations ; SIF ; Soils ; Thermal ; Vegetation</subject><ispartof>Remote sensing of environment, 2019-12, Vol.234, p.111362, Article 111362</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier BV Dec 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-f335b67babfb87c909620d2955154c450b594ce0ae97c54dd9fdf8f16926c1293</citedby><cites>FETCH-LOGICAL-c482t-f335b67babfb87c909620d2955154c450b594ce0ae97c54dd9fdf8f16926c1293</cites><orcidid>0000-0002-6052-3140 ; 0000-0003-3401-7081 ; 0000-0002-2484-8191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425719303815$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pacheco-Labrador, Javier</creatorcontrib><creatorcontrib>Perez-Priego, Oscar</creatorcontrib><creatorcontrib>El-Madany, Tarek S.</creatorcontrib><creatorcontrib>Julitta, Tommaso</creatorcontrib><creatorcontrib>Rossini, Micol</creatorcontrib><creatorcontrib>Guan, Jinhong</creatorcontrib><creatorcontrib>Moreno, Gerardo</creatorcontrib><creatorcontrib>Carvalhais, Nuno</creatorcontrib><creatorcontrib>Martín, M. Pilar</creatorcontrib><creatorcontrib>Gonzalez-Cascon, Rosario</creatorcontrib><creatorcontrib>Kolle, Olaf</creatorcontrib><creatorcontrib>Reischtein, Markus</creatorcontrib><creatorcontrib>van der Tol, Christiaan</creatorcontrib><creatorcontrib>Carrara, Arnaud</creatorcontrib><creatorcontrib>Martini, David</creatorcontrib><creatorcontrib>Hammer, Tiana W.</creatorcontrib><creatorcontrib>Moossen, Heiko</creatorcontrib><creatorcontrib>Migliavacca, Mirco</creatorcontrib><title>Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits</title><title>Remote sensing of environment</title><description>The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation.
The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken.
•Novel SCOPE model inversion approach provides reliable plant functional traits.•GPP results a better constraint of plant functional traits than monochromatic SIF.•Retrieved parameters respond to spatial, temporal and nutrient-induced variability.•Vcmax and Ball-Berry slope evaluated against leaf nitrogen and evaporative fraction.•Pattern-oriented model evaluation enhances model and inversion performance analysis.</description><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide flux</subject><subject>Carboxylation</subject><subject>Chlorophyll</subject><subject>Constraint modelling</subject><subject>Covariance</subject><subject>Eddy covariance</subject><subject>Estimates</subject><subject>Fertilization</subject><subject>Fluorescence</subject><subject>Fruits</subject><subject>GPP</subject><subject>Grasslands</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hyperspectral</subject><subject>Imagery</subject><subject>Inversion</subject><subject>Land surface models</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Leaves</subject><subject>Mediterranean grassland</subject><subject>Nitrogen content</subject><subject>Nutrient availability</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Photosynthesis</subject><subject>Plant functional traits</subject><subject>Primary production</subject><subject>Radiance</subject><subject>Radiative transfer</subject><subject>Radiative transfer models</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>SCOPE inversion</subject><subject>Seasonal variations</subject><subject>SIF</subject><subject>Soils</subject><subject>Thermal</subject><subject>Vegetation</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVooNtNH6A3Qc92JdmyLXoqy2Yb2JCFtGchy6NEiyO5krwQ6MNXrnPOaWD4_n-GD6EvlJSU0ObbuQwRSkaoKCmlVcOu0IZ2rShIS-oPaENIVRc14-1H9CnGMyGUdy3doL_385jsNEKhvYspKOsStu4CIVrvsDf4cfdw2pd4f1HjrJJ1Tzg9A558ApesGhfkcDph5Qb8eHeLjQ__gQApWLiswDSqXGtmp1NuzbvlUIo36NqoMcLnt7lFv2_3v3Y_i-PD4W7341joumOpMFXF-6btVW_6rtWCiIaRgQnOKa91zUnPRa2BKBCt5vUwCDOYztBGsEZTJqot-rr2TsH_mSEmefZzyH9EySrGWTYhmkzRldLBxxjAyCnYFxVeJSVykSzPMkuWi2S5Ss6Z72sG8vsXC0FGbcFpGGwAneTg7Tvpfzo9hQ8</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Pacheco-Labrador, Javier</creator><creator>Perez-Priego, Oscar</creator><creator>El-Madany, Tarek S.</creator><creator>Julitta, Tommaso</creator><creator>Rossini, Micol</creator><creator>Guan, Jinhong</creator><creator>Moreno, Gerardo</creator><creator>Carvalhais, Nuno</creator><creator>Martín, M. Pilar</creator><creator>Gonzalez-Cascon, Rosario</creator><creator>Kolle, Olaf</creator><creator>Reischtein, Markus</creator><creator>van der Tol, Christiaan</creator><creator>Carrara, Arnaud</creator><creator>Martini, David</creator><creator>Hammer, Tiana W.</creator><creator>Moossen, Heiko</creator><creator>Migliavacca, Mirco</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-6052-3140</orcidid><orcidid>https://orcid.org/0000-0003-3401-7081</orcidid><orcidid>https://orcid.org/0000-0002-2484-8191</orcidid></search><sort><creationdate>20191201</creationdate><title>Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits</title><author>Pacheco-Labrador, Javier ; Perez-Priego, Oscar ; El-Madany, Tarek S. ; Julitta, Tommaso ; Rossini, Micol ; Guan, Jinhong ; Moreno, Gerardo ; Carvalhais, Nuno ; Martín, M. Pilar ; Gonzalez-Cascon, Rosario ; Kolle, Olaf ; Reischtein, Markus ; van der Tol, Christiaan ; Carrara, Arnaud ; Martini, David ; Hammer, Tiana W. ; Moossen, Heiko ; Migliavacca, Mirco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-f335b67babfb87c909620d2955154c450b594ce0ae97c54dd9fdf8f16926c1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide flux</topic><topic>Carboxylation</topic><topic>Chlorophyll</topic><topic>Constraint modelling</topic><topic>Covariance</topic><topic>Eddy covariance</topic><topic>Estimates</topic><topic>Fertilization</topic><topic>Fluorescence</topic><topic>Fruits</topic><topic>GPP</topic><topic>Grasslands</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hyperspectral</topic><topic>Imagery</topic><topic>Inversion</topic><topic>Land surface models</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Leaves</topic><topic>Mediterranean grassland</topic><topic>Nitrogen content</topic><topic>Nutrient availability</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Photosynthesis</topic><topic>Plant functional traits</topic><topic>Primary production</topic><topic>Radiance</topic><topic>Radiative transfer</topic><topic>Radiative transfer models</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>SCOPE inversion</topic><topic>Seasonal variations</topic><topic>SIF</topic><topic>Soils</topic><topic>Thermal</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacheco-Labrador, Javier</creatorcontrib><creatorcontrib>Perez-Priego, Oscar</creatorcontrib><creatorcontrib>El-Madany, Tarek S.</creatorcontrib><creatorcontrib>Julitta, Tommaso</creatorcontrib><creatorcontrib>Rossini, Micol</creatorcontrib><creatorcontrib>Guan, Jinhong</creatorcontrib><creatorcontrib>Moreno, Gerardo</creatorcontrib><creatorcontrib>Carvalhais, Nuno</creatorcontrib><creatorcontrib>Martín, M. Pilar</creatorcontrib><creatorcontrib>Gonzalez-Cascon, Rosario</creatorcontrib><creatorcontrib>Kolle, Olaf</creatorcontrib><creatorcontrib>Reischtein, Markus</creatorcontrib><creatorcontrib>van der Tol, Christiaan</creatorcontrib><creatorcontrib>Carrara, Arnaud</creatorcontrib><creatorcontrib>Martini, David</creatorcontrib><creatorcontrib>Hammer, Tiana W.</creatorcontrib><creatorcontrib>Moossen, Heiko</creatorcontrib><creatorcontrib>Migliavacca, Mirco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pacheco-Labrador, Javier</au><au>Perez-Priego, Oscar</au><au>El-Madany, Tarek S.</au><au>Julitta, Tommaso</au><au>Rossini, Micol</au><au>Guan, Jinhong</au><au>Moreno, Gerardo</au><au>Carvalhais, Nuno</au><au>Martín, M. Pilar</au><au>Gonzalez-Cascon, Rosario</au><au>Kolle, Olaf</au><au>Reischtein, Markus</au><au>van der Tol, Christiaan</au><au>Carrara, Arnaud</au><au>Martini, David</au><au>Hammer, Tiana W.</au><au>Moossen, Heiko</au><au>Migliavacca, Mirco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits</atitle><jtitle>Remote sensing of environment</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>234</volume><spage>111362</spage><pages>111362-</pages><artnum>111362</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation.
The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken.
•Novel SCOPE model inversion approach provides reliable plant functional traits.•GPP results a better constraint of plant functional traits than monochromatic SIF.•Retrieved parameters respond to spatial, temporal and nutrient-induced variability.•Vcmax and Ball-Berry slope evaluated against leaf nitrogen and evaporative fraction.•Pattern-oriented model evaluation enhances model and inversion performance analysis.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2019.111362</doi><orcidid>https://orcid.org/0000-0002-6052-3140</orcidid><orcidid>https://orcid.org/0000-0003-3401-7081</orcidid><orcidid>https://orcid.org/0000-0002-2484-8191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2019-12, Vol.234, p.111362, Article 111362 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_journals_2325287196 |
source | Elsevier ScienceDirect Journals |
subjects | Atmospheric models Carbon dioxide Carbon dioxide flux Carboxylation Chlorophyll Constraint modelling Covariance Eddy covariance Estimates Fertilization Fluorescence Fruits GPP Grasslands Heat flux Heat transfer Hyperspectral Imagery Inversion Land surface models Leaf area Leaf area index Leaves Mediterranean grassland Nitrogen content Nutrient availability Parameter estimation Parameter sensitivity Photosynthesis Plant functional traits Primary production Radiance Radiative transfer Radiative transfer models Reflectance Remote sensing Retrieval SCOPE inversion Seasonal variations SIF Soils Thermal Vegetation |
title | Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-constraint%20inversion%20of%20SCOPE.%20Evaluating%20the%20potential%20of%20GPP%20and%20SIF%20for%20the%20retrieval%20of%20plant%20functional%20traits&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Pacheco-Labrador,%20Javier&rft.date=2019-12-01&rft.volume=234&rft.spage=111362&rft.pages=111362-&rft.artnum=111362&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2019.111362&rft_dat=%3Cproquest_cross%3E2325287196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325287196&rft_id=info:pmid/&rft_els_id=S0034425719303815&rfr_iscdi=true |