Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants

•An energy analysis was applied to the single and double flash cycles of a geothermal power plant.•The single and double flash cycles of the geothermal power plant were optimized for maximum total net power.•The optimum flash pressure for single and double flash cycles at optimal design are investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2020-01, Vol.83, p.101713, Article 101713
Hauptverfasser: Hernández Martínez, Emilio, Avitia Carlos, M.C. Patricia, Cisneros Solís, José Isaac, Prieto Avalos, M.C. María del Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101713
container_title Geothermics
container_volume 83
creator Hernández Martínez, Emilio
Avitia Carlos, M.C. Patricia
Cisneros Solís, José Isaac
Prieto Avalos, M.C. María del Carmen
description •An energy analysis was applied to the single and double flash cycles of a geothermal power plant.•The single and double flash cycles of the geothermal power plant were optimized for maximum total net power.•The optimum flash pressure for single and double flash cycles at optimal design are investigated.•A thermodynamic simulation for energy flows was applied to the single and double flash geothermal power plant.•The multiple linear regression shows a mathematical model to predict the net power and thermal efficiency. Geothermal power generation technologies are well established and there are numerous power plants operating worldwide. The Cerro Prieto geothermal field is located in northwestern Mexico, approximately 32 km from the US-México border. A single flash and double flash cycle have been selected for power generation. The study is aimed to thermodynamic simulation and mathematical model development for the single and double flash cycles. Thermodynamic Simulation for energy flows were developed and implemented in Aspen Hysys software, while the multiple linear regression analysis was developed in IBM SPSS software. The single flash cycle thermodynamic simulation of the proposed design shows the plant’s maximum net power output can reach 36.667 MW if the separator and condenser pressures are 650 kPa and 11.5 kPa, respectively. In the double flash cycle, the optimum pressure value for high pressure (HP) separation is 1200 kPa, low pressure (LP) separation is 385 kPa and the pressure for condenser was determined to be 11.5 kPa, the maximum net power output of the plant is 102.112 MW. The multiple linear regression shows mathematical model to predict the net power and thermal efficiency for single flash and double flash cycles, using the independent variables of the well temperature, separator pressure and condenser pressure to obtain a mathematical expression that predicts the behavior of this cycle. While for the double flash cycles, the well temperature, the pressures in the separators and the condenser pressure are used. The mathematical models to predict the net power and the thermal efficiency of the cycles shows a very good approximation to the thermodynamic analysis, the single flash cycle shows ANOVA results net power (r=0.999885, R2=0.999769, p
doi_str_mv 10.1016/j.geothermics.2019.101713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2325284549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650519300112</els_id><sourcerecordid>2325284549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-5a1748cd285badd26df7ea5f43084c788a77953a3844bdf5477c3dcda393411e3</originalsourceid><addsrcrecordid>eNqNkFtPwyAYhonRxHn4DxivO6FAaS9N4ylZohfzmjD4utF0pUKnmb9e6jTx0hsg5HmfD16EriiZU0KLm3a-Bj9uIGydifOc0Gq6l5QdoRktZZUxIYtjNCNMiqwQRJyisxhbQogUkszQ53LKervvdTLg6La7To_O91j3Fm91UqfFGd3hREGHGx8S1a87-Cas363Ssel03GCzNx1E7BtcQwgevwQHo8e_L0yOwX9AwEOn-zFeoJNGdxEuf_Zz9Hp_t6wfs8Xzw1N9u8g0k_mYCU0lL43NS7HS1uaFbSRo0XBGSm5kWWopK8E0Kzlf2UZwKQ2zxmpWMU4psHN0ffAOwb_tII6q9bvQp5EqZ7nISy54lajqQJngYwzQqCG4rQ57RYmaqlat-lO1mqpWh6pTtj5kIX3j3UFQ0TjoDVgXwIzKevcPyxcFB4_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325284549</pqid></control><display><type>article</type><title>Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hernández Martínez, Emilio ; Avitia Carlos, M.C. Patricia ; Cisneros Solís, José Isaac ; Prieto Avalos, M.C. María del Carmen</creator><creatorcontrib>Hernández Martínez, Emilio ; Avitia Carlos, M.C. Patricia ; Cisneros Solís, José Isaac ; Prieto Avalos, M.C. María del Carmen</creatorcontrib><description>•An energy analysis was applied to the single and double flash cycles of a geothermal power plant.•The single and double flash cycles of the geothermal power plant were optimized for maximum total net power.•The optimum flash pressure for single and double flash cycles at optimal design are investigated.•A thermodynamic simulation for energy flows was applied to the single and double flash geothermal power plant.•The multiple linear regression shows a mathematical model to predict the net power and thermal efficiency. Geothermal power generation technologies are well established and there are numerous power plants operating worldwide. The Cerro Prieto geothermal field is located in northwestern Mexico, approximately 32 km from the US-México border. A single flash and double flash cycle have been selected for power generation. The study is aimed to thermodynamic simulation and mathematical model development for the single and double flash cycles. Thermodynamic Simulation for energy flows were developed and implemented in Aspen Hysys software, while the multiple linear regression analysis was developed in IBM SPSS software. The single flash cycle thermodynamic simulation of the proposed design shows the plant’s maximum net power output can reach 36.667 MW if the separator and condenser pressures are 650 kPa and 11.5 kPa, respectively. In the double flash cycle, the optimum pressure value for high pressure (HP) separation is 1200 kPa, low pressure (LP) separation is 385 kPa and the pressure for condenser was determined to be 11.5 kPa, the maximum net power output of the plant is 102.112 MW. The multiple linear regression shows mathematical model to predict the net power and thermal efficiency for single flash and double flash cycles, using the independent variables of the well temperature, separator pressure and condenser pressure to obtain a mathematical expression that predicts the behavior of this cycle. While for the double flash cycles, the well temperature, the pressures in the separators and the condenser pressure are used. The mathematical models to predict the net power and the thermal efficiency of the cycles shows a very good approximation to the thermodynamic analysis, the single flash cycle shows ANOVA results net power (r=0.999885, R2=0.999769, p&lt;0.0001) and thermal efficiency (r=0.999628, R2=0.999256, p&lt;0.0001), while the double flash cycle ANOVA results net power (r=0.999861, R2=0.999722, p&lt;0.0001) and thermal efficiency (r=0.999806, R2=0.999612, p&lt;0.0001).</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2019.101713</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cerro Prieto geothermal power plants ; Computer programs ; Computer simulation ; Efficiency ; Electric power generation ; Energy flow ; Geothermal energy ; Geothermal power ; Geothermal power plants ; High pressure ; Independent variables ; Low pressure ; Mathematical model ; Mathematical models ; Power efficiency ; Power plants ; Predict net power ; Predict thermal efficiency ; Pressure ; Regression analysis ; Regression models ; Separation ; Separators ; Software ; Temperature ; Thermodynamic efficiency ; Thermodynamic simulation ; Variance analysis</subject><ispartof>Geothermics, 2020-01, Vol.83, p.101713, Article 101713</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-5a1748cd285badd26df7ea5f43084c788a77953a3844bdf5477c3dcda393411e3</citedby><cites>FETCH-LOGICAL-a372t-5a1748cd285badd26df7ea5f43084c788a77953a3844bdf5477c3dcda393411e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375650519300112$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hernández Martínez, Emilio</creatorcontrib><creatorcontrib>Avitia Carlos, M.C. Patricia</creatorcontrib><creatorcontrib>Cisneros Solís, José Isaac</creatorcontrib><creatorcontrib>Prieto Avalos, M.C. María del Carmen</creatorcontrib><title>Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants</title><title>Geothermics</title><description>•An energy analysis was applied to the single and double flash cycles of a geothermal power plant.•The single and double flash cycles of the geothermal power plant were optimized for maximum total net power.•The optimum flash pressure for single and double flash cycles at optimal design are investigated.•A thermodynamic simulation for energy flows was applied to the single and double flash geothermal power plant.•The multiple linear regression shows a mathematical model to predict the net power and thermal efficiency. Geothermal power generation technologies are well established and there are numerous power plants operating worldwide. The Cerro Prieto geothermal field is located in northwestern Mexico, approximately 32 km from the US-México border. A single flash and double flash cycle have been selected for power generation. The study is aimed to thermodynamic simulation and mathematical model development for the single and double flash cycles. Thermodynamic Simulation for energy flows were developed and implemented in Aspen Hysys software, while the multiple linear regression analysis was developed in IBM SPSS software. The single flash cycle thermodynamic simulation of the proposed design shows the plant’s maximum net power output can reach 36.667 MW if the separator and condenser pressures are 650 kPa and 11.5 kPa, respectively. In the double flash cycle, the optimum pressure value for high pressure (HP) separation is 1200 kPa, low pressure (LP) separation is 385 kPa and the pressure for condenser was determined to be 11.5 kPa, the maximum net power output of the plant is 102.112 MW. The multiple linear regression shows mathematical model to predict the net power and thermal efficiency for single flash and double flash cycles, using the independent variables of the well temperature, separator pressure and condenser pressure to obtain a mathematical expression that predicts the behavior of this cycle. While for the double flash cycles, the well temperature, the pressures in the separators and the condenser pressure are used. The mathematical models to predict the net power and the thermal efficiency of the cycles shows a very good approximation to the thermodynamic analysis, the single flash cycle shows ANOVA results net power (r=0.999885, R2=0.999769, p&lt;0.0001) and thermal efficiency (r=0.999628, R2=0.999256, p&lt;0.0001), while the double flash cycle ANOVA results net power (r=0.999861, R2=0.999722, p&lt;0.0001) and thermal efficiency (r=0.999806, R2=0.999612, p&lt;0.0001).</description><subject>Cerro Prieto geothermal power plants</subject><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Electric power generation</subject><subject>Energy flow</subject><subject>Geothermal energy</subject><subject>Geothermal power</subject><subject>Geothermal power plants</subject><subject>High pressure</subject><subject>Independent variables</subject><subject>Low pressure</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Power efficiency</subject><subject>Power plants</subject><subject>Predict net power</subject><subject>Predict thermal efficiency</subject><subject>Pressure</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Separation</subject><subject>Separators</subject><subject>Software</subject><subject>Temperature</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamic simulation</subject><subject>Variance analysis</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkFtPwyAYhonRxHn4DxivO6FAaS9N4ylZohfzmjD4utF0pUKnmb9e6jTx0hsg5HmfD16EriiZU0KLm3a-Bj9uIGydifOc0Gq6l5QdoRktZZUxIYtjNCNMiqwQRJyisxhbQogUkszQ53LKervvdTLg6La7To_O91j3Fm91UqfFGd3hREGHGx8S1a87-Cas363Ssel03GCzNx1E7BtcQwgevwQHo8e_L0yOwX9AwEOn-zFeoJNGdxEuf_Zz9Hp_t6wfs8Xzw1N9u8g0k_mYCU0lL43NS7HS1uaFbSRo0XBGSm5kWWopK8E0Kzlf2UZwKQ2zxmpWMU4psHN0ffAOwb_tII6q9bvQp5EqZ7nISy54lajqQJngYwzQqCG4rQ57RYmaqlat-lO1mqpWh6pTtj5kIX3j3UFQ0TjoDVgXwIzKevcPyxcFB4_-</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Hernández Martínez, Emilio</creator><creator>Avitia Carlos, M.C. Patricia</creator><creator>Cisneros Solís, José Isaac</creator><creator>Prieto Avalos, M.C. María del Carmen</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202001</creationdate><title>Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants</title><author>Hernández Martínez, Emilio ; Avitia Carlos, M.C. Patricia ; Cisneros Solís, José Isaac ; Prieto Avalos, M.C. María del Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-5a1748cd285badd26df7ea5f43084c788a77953a3844bdf5477c3dcda393411e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cerro Prieto geothermal power plants</topic><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Electric power generation</topic><topic>Energy flow</topic><topic>Geothermal energy</topic><topic>Geothermal power</topic><topic>Geothermal power plants</topic><topic>High pressure</topic><topic>Independent variables</topic><topic>Low pressure</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Power efficiency</topic><topic>Power plants</topic><topic>Predict net power</topic><topic>Predict thermal efficiency</topic><topic>Pressure</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Separation</topic><topic>Separators</topic><topic>Software</topic><topic>Temperature</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamic simulation</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández Martínez, Emilio</creatorcontrib><creatorcontrib>Avitia Carlos, M.C. Patricia</creatorcontrib><creatorcontrib>Cisneros Solís, José Isaac</creatorcontrib><creatorcontrib>Prieto Avalos, M.C. María del Carmen</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández Martínez, Emilio</au><au>Avitia Carlos, M.C. Patricia</au><au>Cisneros Solís, José Isaac</au><au>Prieto Avalos, M.C. María del Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants</atitle><jtitle>Geothermics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>83</volume><spage>101713</spage><pages>101713-</pages><artnum>101713</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>•An energy analysis was applied to the single and double flash cycles of a geothermal power plant.•The single and double flash cycles of the geothermal power plant were optimized for maximum total net power.•The optimum flash pressure for single and double flash cycles at optimal design are investigated.•A thermodynamic simulation for energy flows was applied to the single and double flash geothermal power plant.•The multiple linear regression shows a mathematical model to predict the net power and thermal efficiency. Geothermal power generation technologies are well established and there are numerous power plants operating worldwide. The Cerro Prieto geothermal field is located in northwestern Mexico, approximately 32 km from the US-México border. A single flash and double flash cycle have been selected for power generation. The study is aimed to thermodynamic simulation and mathematical model development for the single and double flash cycles. Thermodynamic Simulation for energy flows were developed and implemented in Aspen Hysys software, while the multiple linear regression analysis was developed in IBM SPSS software. The single flash cycle thermodynamic simulation of the proposed design shows the plant’s maximum net power output can reach 36.667 MW if the separator and condenser pressures are 650 kPa and 11.5 kPa, respectively. In the double flash cycle, the optimum pressure value for high pressure (HP) separation is 1200 kPa, low pressure (LP) separation is 385 kPa and the pressure for condenser was determined to be 11.5 kPa, the maximum net power output of the plant is 102.112 MW. The multiple linear regression shows mathematical model to predict the net power and thermal efficiency for single flash and double flash cycles, using the independent variables of the well temperature, separator pressure and condenser pressure to obtain a mathematical expression that predicts the behavior of this cycle. While for the double flash cycles, the well temperature, the pressures in the separators and the condenser pressure are used. The mathematical models to predict the net power and the thermal efficiency of the cycles shows a very good approximation to the thermodynamic analysis, the single flash cycle shows ANOVA results net power (r=0.999885, R2=0.999769, p&lt;0.0001) and thermal efficiency (r=0.999628, R2=0.999256, p&lt;0.0001), while the double flash cycle ANOVA results net power (r=0.999861, R2=0.999722, p&lt;0.0001) and thermal efficiency (r=0.999806, R2=0.999612, p&lt;0.0001).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2019.101713</doi></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2020-01, Vol.83, p.101713, Article 101713
issn 0375-6505
1879-3576
language eng
recordid cdi_proquest_journals_2325284549
source Elsevier ScienceDirect Journals Complete
subjects Cerro Prieto geothermal power plants
Computer programs
Computer simulation
Efficiency
Electric power generation
Energy flow
Geothermal energy
Geothermal power
Geothermal power plants
High pressure
Independent variables
Low pressure
Mathematical model
Mathematical models
Power efficiency
Power plants
Predict net power
Predict thermal efficiency
Pressure
Regression analysis
Regression models
Separation
Separators
Software
Temperature
Thermodynamic efficiency
Thermodynamic simulation
Variance analysis
title Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20simulation%20and%20mathematical%20model%20for%20single%20and%20double%20flash%20cycles%20of%20Cerro%20Prieto%20geothermal%20power%20plants&rft.jtitle=Geothermics&rft.au=Hern%C3%A1ndez%20Mart%C3%ADnez,%20Emilio&rft.date=2020-01&rft.volume=83&rft.spage=101713&rft.pages=101713-&rft.artnum=101713&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2019.101713&rft_dat=%3Cproquest_cross%3E2325284549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325284549&rft_id=info:pmid/&rft_els_id=S0375650519300112&rfr_iscdi=true