Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator
At present, the production of electrical and heat power uses diesel-generator technology with a limited service life of engines and extremely low efficiency of the expensive fuel used. In this paper, an innovative technology has been considered for the combined electrical and heat power production u...
Gespeichert in:
Veröffentlicht in: | International journal of energy production and management 2019-11, Vol.4 (4), p.273-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 4 |
container_start_page | 273 |
container_title | International journal of energy production and management |
container_volume | 4 |
creator | Shcheklein, Sergei E. Dubinin, Alexei M. |
description | At present, the production of electrical and heat power uses diesel-generator technology with a limited service life of engines and extremely low efficiency of the expensive fuel used. In this paper, an innovative technology has been considered for the combined electrical and heat power production using the preliminary conversion of diesel fuel into synthesis gas with its subsequent supply to a high temperature electrochemical generator (ECG). Synthesis gas for the operation of the electrochemical generator was produced by air conversion of motor diesel fuels in a catalytic burner reactor. On the basis of heat balances of the burner, ECG and waste-heat boiler-utilizer, electrical efficiency of the solid oxide fuel cells’ (SOFC) battery, chemical efficiency of the burner, the temperature at the SOFC anode, the EMF of the planar cell, a portion of hydrogen oxidized at the SOFC anode, specific consumption of diesel fuel for the production of electrical and heat power were calculated. Specific consumption of diesel fuel for the production of electrical and heat power was found to be equal to 114 g/kWh (162 g r.f./kW·h) and 31.7 kg/GJ (45.1 kg r.f./GJ, 189 kg r.f./ Gcal), respectively. Specific fuel consumption is similar to an up-to-date CHP and is significantly lower than the consumption of modern diesel-electric stations of equal power. |
doi_str_mv | 10.2495/EQ-V4-N4-273-286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2324950490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324950490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1816-f46a26a0484c7f8ac3abb5b72f7b0016edeb4c7491825809904cfa29d88d8ec13</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOObuHgOeo69p2qZHGdMJQx3MXUOaJltGl2zJKuy_N2XDy3sPvo_fgx9Cjxk8U1YXL7MlWTPyyQitckJ5eYNGFIqS5JTD7f9d0Xs0iXEHALSqGZRshI6rrQ57356d3FuF06U76zbYG6z8Rjsd5Ml6h_fWWTydf-M-DljakLj71SEONNmt1VF32PRpSNdi3Wl1Cl5tdcqVHb5m-fCA7ozsop5c9xj9vM1W0zlZfL1_TF8XRGU8K4lhpaSlBMaZqgyXKpdNUzQVNVUDkJW61U0irM44LTjUNTBlJK1bzluuVZaP0dMl9xD8sdfxJHa-Dy69FDQfWgNWQ7LgYqngYwzaiEOwexnOIgMxWGK2FGsmPplI3YrUbf4HdX5uDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324950490</pqid></control><display><type>article</type><title>Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shcheklein, Sergei E. ; Dubinin, Alexei M.</creator><creatorcontrib>Shcheklein, Sergei E. ; Dubinin, Alexei M.</creatorcontrib><description>At present, the production of electrical and heat power uses diesel-generator technology with a limited service life of engines and extremely low efficiency of the expensive fuel used. In this paper, an innovative technology has been considered for the combined electrical and heat power production using the preliminary conversion of diesel fuel into synthesis gas with its subsequent supply to a high temperature electrochemical generator (ECG). Synthesis gas for the operation of the electrochemical generator was produced by air conversion of motor diesel fuels in a catalytic burner reactor. On the basis of heat balances of the burner, ECG and waste-heat boiler-utilizer, electrical efficiency of the solid oxide fuel cells’ (SOFC) battery, chemical efficiency of the burner, the temperature at the SOFC anode, the EMF of the planar cell, a portion of hydrogen oxidized at the SOFC anode, specific consumption of diesel fuel for the production of electrical and heat power were calculated. Specific consumption of diesel fuel for the production of electrical and heat power was found to be equal to 114 g/kWh (162 g r.f./kW·h) and 31.7 kg/GJ (45.1 kg r.f./GJ, 189 kg r.f./ Gcal), respectively. Specific fuel consumption is similar to an up-to-date CHP and is significantly lower than the consumption of modern diesel-electric stations of equal power.</description><identifier>ISSN: 2056-3272</identifier><identifier>EISSN: 2056-3280</identifier><identifier>DOI: 10.2495/EQ-V4-N4-273-286</identifier><language>eng</language><publisher>Southampton: W I T Press</publisher><subject>Anodes ; Catalytic converters ; Cogeneration ; Conversion ; Diesel engines ; Diesel fuels ; Diesel generators ; Efficiency ; Fuel consumption ; Heat ; High temperature ; Nuclear fuels ; Organic chemistry ; Power consumption ; Service life ; Solid oxide fuel cells ; Synthesis gas ; Thermodynamic models</subject><ispartof>International journal of energy production and management, 2019-11, Vol.4 (4), p.273-286</ispartof><rights>2019. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.witpress.com/journals/eq or in accordance with the terms at https://creativecommons.org/licenses/by/4.0/ (the “License”), if applicable</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27915,27916</link.rule.ids></links><search><creatorcontrib>Shcheklein, Sergei E.</creatorcontrib><creatorcontrib>Dubinin, Alexei M.</creatorcontrib><title>Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator</title><title>International journal of energy production and management</title><description>At present, the production of electrical and heat power uses diesel-generator technology with a limited service life of engines and extremely low efficiency of the expensive fuel used. In this paper, an innovative technology has been considered for the combined electrical and heat power production using the preliminary conversion of diesel fuel into synthesis gas with its subsequent supply to a high temperature electrochemical generator (ECG). Synthesis gas for the operation of the electrochemical generator was produced by air conversion of motor diesel fuels in a catalytic burner reactor. On the basis of heat balances of the burner, ECG and waste-heat boiler-utilizer, electrical efficiency of the solid oxide fuel cells’ (SOFC) battery, chemical efficiency of the burner, the temperature at the SOFC anode, the EMF of the planar cell, a portion of hydrogen oxidized at the SOFC anode, specific consumption of diesel fuel for the production of electrical and heat power were calculated. Specific consumption of diesel fuel for the production of electrical and heat power was found to be equal to 114 g/kWh (162 g r.f./kW·h) and 31.7 kg/GJ (45.1 kg r.f./GJ, 189 kg r.f./ Gcal), respectively. Specific fuel consumption is similar to an up-to-date CHP and is significantly lower than the consumption of modern diesel-electric stations of equal power.</description><subject>Anodes</subject><subject>Catalytic converters</subject><subject>Cogeneration</subject><subject>Conversion</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Diesel generators</subject><subject>Efficiency</subject><subject>Fuel consumption</subject><subject>Heat</subject><subject>High temperature</subject><subject>Nuclear fuels</subject><subject>Organic chemistry</subject><subject>Power consumption</subject><subject>Service life</subject><subject>Solid oxide fuel cells</subject><subject>Synthesis gas</subject><subject>Thermodynamic models</subject><issn>2056-3272</issn><issn>2056-3280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kMFLwzAUh4MoOObuHgOeo69p2qZHGdMJQx3MXUOaJltGl2zJKuy_N2XDy3sPvo_fgx9Cjxk8U1YXL7MlWTPyyQitckJ5eYNGFIqS5JTD7f9d0Xs0iXEHALSqGZRshI6rrQ57356d3FuF06U76zbYG6z8Rjsd5Ml6h_fWWTydf-M-DljakLj71SEONNmt1VF32PRpSNdi3Wl1Cl5tdcqVHb5m-fCA7ozsop5c9xj9vM1W0zlZfL1_TF8XRGU8K4lhpaSlBMaZqgyXKpdNUzQVNVUDkJW61U0irM44LTjUNTBlJK1bzluuVZaP0dMl9xD8sdfxJHa-Dy69FDQfWgNWQ7LgYqngYwzaiEOwexnOIgMxWGK2FGsmPplI3YrUbf4HdX5uDA</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Shcheklein, Sergei E.</creator><creator>Dubinin, Alexei M.</creator><general>W I T Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191130</creationdate><title>Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator</title><author>Shcheklein, Sergei E. ; Dubinin, Alexei M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1816-f46a26a0484c7f8ac3abb5b72f7b0016edeb4c7491825809904cfa29d88d8ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Catalytic converters</topic><topic>Cogeneration</topic><topic>Conversion</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Diesel generators</topic><topic>Efficiency</topic><topic>Fuel consumption</topic><topic>Heat</topic><topic>High temperature</topic><topic>Nuclear fuels</topic><topic>Organic chemistry</topic><topic>Power consumption</topic><topic>Service life</topic><topic>Solid oxide fuel cells</topic><topic>Synthesis gas</topic><topic>Thermodynamic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shcheklein, Sergei E.</creatorcontrib><creatorcontrib>Dubinin, Alexei M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of energy production and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shcheklein, Sergei E.</au><au>Dubinin, Alexei M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator</atitle><jtitle>International journal of energy production and management</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>273</spage><epage>286</epage><pages>273-286</pages><issn>2056-3272</issn><eissn>2056-3280</eissn><abstract>At present, the production of electrical and heat power uses diesel-generator technology with a limited service life of engines and extremely low efficiency of the expensive fuel used. In this paper, an innovative technology has been considered for the combined electrical and heat power production using the preliminary conversion of diesel fuel into synthesis gas with its subsequent supply to a high temperature electrochemical generator (ECG). Synthesis gas for the operation of the electrochemical generator was produced by air conversion of motor diesel fuels in a catalytic burner reactor. On the basis of heat balances of the burner, ECG and waste-heat boiler-utilizer, electrical efficiency of the solid oxide fuel cells’ (SOFC) battery, chemical efficiency of the burner, the temperature at the SOFC anode, the EMF of the planar cell, a portion of hydrogen oxidized at the SOFC anode, specific consumption of diesel fuel for the production of electrical and heat power were calculated. Specific consumption of diesel fuel for the production of electrical and heat power was found to be equal to 114 g/kWh (162 g r.f./kW·h) and 31.7 kg/GJ (45.1 kg r.f./GJ, 189 kg r.f./ Gcal), respectively. Specific fuel consumption is similar to an up-to-date CHP and is significantly lower than the consumption of modern diesel-electric stations of equal power.</abstract><cop>Southampton</cop><pub>W I T Press</pub><doi>10.2495/EQ-V4-N4-273-286</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-3272 |
ispartof | International journal of energy production and management, 2019-11, Vol.4 (4), p.273-286 |
issn | 2056-3272 2056-3280 |
language | eng |
recordid | cdi_proquest_journals_2324950490 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Anodes Catalytic converters Cogeneration Conversion Diesel engines Diesel fuels Diesel generators Efficiency Fuel consumption Heat High temperature Nuclear fuels Organic chemistry Power consumption Service life Solid oxide fuel cells Synthesis gas Thermodynamic models |
title | Thermodynamic modeling of cogeneration mini CHP using air conversion of diesel fuel and electrochemical generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20cogeneration%20mini%20CHP%20using%20air%20conversion%20of%20diesel%20fuel%20and%20electrochemical%20generator&rft.jtitle=International%20journal%20of%20energy%20production%20and%20management&rft.au=Shcheklein,%20Sergei%20E.&rft.date=2019-11-30&rft.volume=4&rft.issue=4&rft.spage=273&rft.epage=286&rft.pages=273-286&rft.issn=2056-3272&rft.eissn=2056-3280&rft_id=info:doi/10.2495/EQ-V4-N4-273-286&rft_dat=%3Cproquest_cross%3E2324950490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324950490&rft_id=info:pmid/&rfr_iscdi=true |