Optimization in airless tires design using backpropagation neural network (BPNN) and genetic algorithm (GA) approaches
Airless tires are designed and produced to overcome problems in the radial tires and solid tires. This tire provides a safe and comfortable driving experience in a vehicle during operation. Moreover, this tire still work when it hit by sharp objects (i.e., spike, nail, gun projectile, etc.). This re...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2187 |
creator | Pramono, Agus Sigit Effendi, Mohammad Khoirul |
description | Airless tires are designed and produced to overcome problems in the radial tires and solid tires. This tire provides a safe and comfortable driving experience in a vehicle during operation. Moreover, this tire still work when it hit by sharp objects (i.e., spike, nail, gun projectile, etc.). This research will be focused on designing airless tires using three parameters input, namely spoke thickness, rhombic angle, and rubber material. Each parameter uses three different levels, so the total design number is 27 designs. The thickness parameter of spoke levels was varied from 2 mm, 3 mm, and 4 mm, where the rhombic angles parameter was varied from 100°, 120°, and 135°. The last parameter (i.e., type of rubber material) was used in designing are Polyurathane L42, Polyurathane L100, and Polyurathane L135. The value of deflection and total stress every model are then calculated using finite element software. Furthermore, artificial intelligence using backpropagation of neural network (BPNN) was developed and utilized as a forecasting tool to predict the relationship between input (spoke thickness, rhombic angle, and rubber material) and output (deflection and total stress) of the airless tire models. Next, an optimization method using genetic algorithm (GA) is then employed to find the best design of the airless tire. Moreover, the best airless design will be selected to be produced as an airless-tire prototype. |
doi_str_mv | 10.1063/1.5138331 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2323225939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323225939</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-81e0ab6d1175673c872c32a2cd86ae773232e0e7588e30498edf7df5534d1bb63</originalsourceid><addsrcrecordid>eNp9kV9LwzAUxYMoOKcPfoOAL1PozJ-mSR_n0CmMzQcF30LapF22rq1JOtFPb-cE33w6cO_v3MO9F4BLjMYYJfQWjxmmglJ8BAaYMRzxBCfHYIBQGkckpm-n4Mz7NUIk5VwMwG7ZBru1XyrYpoa2hsq6yngPg3XGQ228LWvYeVuXMFP5pnVNq8oDXZvOqaqX8NG4DRzdPS8W11DVGpamL9ocqqpsnA2rLRzNJn2r7e0qXxl_Dk4KVXlz8atD8Ppw_zJ9jObL2dN0Mo9awmiIBDZIZYnGmLOE01xwklOiSK5FogznlFBikOFMCENRnAqjC64LxmiscZYldAiuDnP74PfO-CDXTefqPlKSvZmwlKY9dXOgfG7Dz26ydXar3KfcNU5i-XtT2eriPxgjuX_Cn4F-A6MdeVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2323225939</pqid></control><display><type>conference_proceeding</type><title>Optimization in airless tires design using backpropagation neural network (BPNN) and genetic algorithm (GA) approaches</title><source>AIP Journals Complete</source><creator>Pramono, Agus Sigit ; Effendi, Mohammad Khoirul</creator><contributor>Suwarno ; Djanali, Vivien ; Mubarok, Fahmi ; Pramujati, Bambang</contributor><creatorcontrib>Pramono, Agus Sigit ; Effendi, Mohammad Khoirul ; Suwarno ; Djanali, Vivien ; Mubarok, Fahmi ; Pramujati, Bambang</creatorcontrib><description>Airless tires are designed and produced to overcome problems in the radial tires and solid tires. This tire provides a safe and comfortable driving experience in a vehicle during operation. Moreover, this tire still work when it hit by sharp objects (i.e., spike, nail, gun projectile, etc.). This research will be focused on designing airless tires using three parameters input, namely spoke thickness, rhombic angle, and rubber material. Each parameter uses three different levels, so the total design number is 27 designs. The thickness parameter of spoke levels was varied from 2 mm, 3 mm, and 4 mm, where the rhombic angles parameter was varied from 100°, 120°, and 135°. The last parameter (i.e., type of rubber material) was used in designing are Polyurathane L42, Polyurathane L100, and Polyurathane L135. The value of deflection and total stress every model are then calculated using finite element software. Furthermore, artificial intelligence using backpropagation of neural network (BPNN) was developed and utilized as a forecasting tool to predict the relationship between input (spoke thickness, rhombic angle, and rubber material) and output (deflection and total stress) of the airless tire models. Next, an optimization method using genetic algorithm (GA) is then employed to find the best design of the airless tire. Moreover, the best airless design will be selected to be produced as an airless-tire prototype.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5138331</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automotive parts ; Back propagation ; Deflection ; Design ; Design optimization ; Finite element method ; Genetic algorithms ; Mathematical models ; Neural networks ; Parameters ; Projectiles ; Rubber ; Thickness ; Tires</subject><ispartof>AIP conference proceedings, 2019, Vol.2187 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5138331$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Suwarno</contributor><contributor>Djanali, Vivien</contributor><contributor>Mubarok, Fahmi</contributor><contributor>Pramujati, Bambang</contributor><creatorcontrib>Pramono, Agus Sigit</creatorcontrib><creatorcontrib>Effendi, Mohammad Khoirul</creatorcontrib><title>Optimization in airless tires design using backpropagation neural network (BPNN) and genetic algorithm (GA) approaches</title><title>AIP conference proceedings</title><description>Airless tires are designed and produced to overcome problems in the radial tires and solid tires. This tire provides a safe and comfortable driving experience in a vehicle during operation. Moreover, this tire still work when it hit by sharp objects (i.e., spike, nail, gun projectile, etc.). This research will be focused on designing airless tires using three parameters input, namely spoke thickness, rhombic angle, and rubber material. Each parameter uses three different levels, so the total design number is 27 designs. The thickness parameter of spoke levels was varied from 2 mm, 3 mm, and 4 mm, where the rhombic angles parameter was varied from 100°, 120°, and 135°. The last parameter (i.e., type of rubber material) was used in designing are Polyurathane L42, Polyurathane L100, and Polyurathane L135. The value of deflection and total stress every model are then calculated using finite element software. Furthermore, artificial intelligence using backpropagation of neural network (BPNN) was developed and utilized as a forecasting tool to predict the relationship between input (spoke thickness, rhombic angle, and rubber material) and output (deflection and total stress) of the airless tire models. Next, an optimization method using genetic algorithm (GA) is then employed to find the best design of the airless tire. Moreover, the best airless design will be selected to be produced as an airless-tire prototype.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automotive parts</subject><subject>Back propagation</subject><subject>Deflection</subject><subject>Design</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Projectiles</subject><subject>Rubber</subject><subject>Thickness</subject><subject>Tires</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kV9LwzAUxYMoOKcPfoOAL1PozJ-mSR_n0CmMzQcF30LapF22rq1JOtFPb-cE33w6cO_v3MO9F4BLjMYYJfQWjxmmglJ8BAaYMRzxBCfHYIBQGkckpm-n4Mz7NUIk5VwMwG7ZBru1XyrYpoa2hsq6yngPg3XGQ228LWvYeVuXMFP5pnVNq8oDXZvOqaqX8NG4DRzdPS8W11DVGpamL9ocqqpsnA2rLRzNJn2r7e0qXxl_Dk4KVXlz8atD8Ppw_zJ9jObL2dN0Mo9awmiIBDZIZYnGmLOE01xwklOiSK5FogznlFBikOFMCENRnAqjC64LxmiscZYldAiuDnP74PfO-CDXTefqPlKSvZmwlKY9dXOgfG7Dz26ydXar3KfcNU5i-XtT2eriPxgjuX_Cn4F-A6MdeVE</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Pramono, Agus Sigit</creator><creator>Effendi, Mohammad Khoirul</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191210</creationdate><title>Optimization in airless tires design using backpropagation neural network (BPNN) and genetic algorithm (GA) approaches</title><author>Pramono, Agus Sigit ; Effendi, Mohammad Khoirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-81e0ab6d1175673c872c32a2cd86ae773232e0e7588e30498edf7df5534d1bb63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automotive parts</topic><topic>Back propagation</topic><topic>Deflection</topic><topic>Design</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Projectiles</topic><topic>Rubber</topic><topic>Thickness</topic><topic>Tires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pramono, Agus Sigit</creatorcontrib><creatorcontrib>Effendi, Mohammad Khoirul</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pramono, Agus Sigit</au><au>Effendi, Mohammad Khoirul</au><au>Suwarno</au><au>Djanali, Vivien</au><au>Mubarok, Fahmi</au><au>Pramujati, Bambang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization in airless tires design using backpropagation neural network (BPNN) and genetic algorithm (GA) approaches</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-10</date><risdate>2019</risdate><volume>2187</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Airless tires are designed and produced to overcome problems in the radial tires and solid tires. This tire provides a safe and comfortable driving experience in a vehicle during operation. Moreover, this tire still work when it hit by sharp objects (i.e., spike, nail, gun projectile, etc.). This research will be focused on designing airless tires using three parameters input, namely spoke thickness, rhombic angle, and rubber material. Each parameter uses three different levels, so the total design number is 27 designs. The thickness parameter of spoke levels was varied from 2 mm, 3 mm, and 4 mm, where the rhombic angles parameter was varied from 100°, 120°, and 135°. The last parameter (i.e., type of rubber material) was used in designing are Polyurathane L42, Polyurathane L100, and Polyurathane L135. The value of deflection and total stress every model are then calculated using finite element software. Furthermore, artificial intelligence using backpropagation of neural network (BPNN) was developed and utilized as a forecasting tool to predict the relationship between input (spoke thickness, rhombic angle, and rubber material) and output (deflection and total stress) of the airless tire models. Next, an optimization method using genetic algorithm (GA) is then employed to find the best design of the airless tire. Moreover, the best airless design will be selected to be produced as an airless-tire prototype.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5138331</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2187 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2323225939 |
source | AIP Journals Complete |
subjects | Artificial intelligence Artificial neural networks Automotive parts Back propagation Deflection Design Design optimization Finite element method Genetic algorithms Mathematical models Neural networks Parameters Projectiles Rubber Thickness Tires |
title | Optimization in airless tires design using backpropagation neural network (BPNN) and genetic algorithm (GA) approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20in%20airless%20tires%20design%20using%20backpropagation%20neural%20network%20(BPNN)%20and%20genetic%20algorithm%20(GA)%20approaches&rft.btitle=AIP%20conference%20proceedings&rft.au=Pramono,%20Agus%20Sigit&rft.date=2019-12-10&rft.volume=2187&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5138331&rft_dat=%3Cproquest_scita%3E2323225939%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323225939&rft_id=info:pmid/&rfr_iscdi=true |