Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film
Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industri...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-12, Vol.9 (12), p.125014-125014-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125014-13 |
---|---|
container_issue | 12 |
container_start_page | 125014 |
container_title | AIP advances |
container_volume | 9 |
creator | Belus, Vincent Rabault, Jean Viquerat, Jonathan Che, Zhizhao Hachem, Elie Reglade, Ulysse |
description | Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance. |
doi_str_mv | 10.1063/1.5132378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2323225047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c080bc7196cf455ba6ee2bb5a27b6a36</doaj_id><sourcerecordid>2323225047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3</originalsourceid><addsrcrecordid>eNp9ksFu3CAQhq2qlRqlOfQJitRTKzkFbIx9jKK0ibRSLu0ZjWHYsGJhA-yqeZU-bdl11KaXcgH9-vTPDP80zXtGLxkdui_sUrCOd3J81ZxxJsa243x4_eL9trnIeUPr6SdGx_6s-XXzc-ejKy6siY8avCtPBIIhJUHIHoqLATxx4QDJQdBISiQGs1sHgtaiLu6AVcAdSeiCjUnjFkMhHiGFo6uOoaToSbSkPCBhrXEVyIvvPuQCs0diwftTD-5x7wyxzm_fNW-qmvHi-T5vfny9-X59267uv91dX61aLZgsre2loZIJNsz9yERfx0ImB9CjmYQdQaCxhs89FbQHoxGp1FZ0eponLgZhu_PmbvE1ETZql9wW0pOK4NRJiGmtIBWnPSpNRzpryaZB216IGQZEPs8CuJwH6Ibq9WnxegD_j9Xt1UodNcp7ygRlB1bZDwurk8s1ABViAlVjEVxJQYcj8XEhdik-7jEXtYn7VP8tK15z5ryOJP_W1CnmnND-KcyoOu6FYup5Lyr7eWGzduUU7n_g3zEVt8c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323225047</pqid></control><display><type>article</type><title>Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Belus, Vincent ; Rabault, Jean ; Viquerat, Jonathan ; Che, Zhizhao ; Hachem, Elie ; Reglade, Ulysse</creator><creatorcontrib>Belus, Vincent ; Rabault, Jean ; Viquerat, Jonathan ; Che, Zhizhao ; Hachem, Elie ; Reglade, Ulysse</creatorcontrib><description>Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5132378</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Architecture ; Artificial Intelligence ; Computer Science ; Falling liquid films ; Fluid mechanics ; Invariance ; Machine learning ; Mathematical Physics ; Mechanics ; Modeling and Simulation ; Multiphase flow ; Physics ; System effectiveness</subject><ispartof>AIP advances, 2019-12, Vol.9 (12), p.125014-125014-13</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3</citedby><cites>FETCH-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3</cites><orcidid>0000-0002-7244-6592 ; 0000-0002-5947-138X ; 0000-0002-0682-0603 ; 0000-0002-6026-9250 ; 0000-0002-2202-6397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,26567,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02401501$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belus, Vincent</creatorcontrib><creatorcontrib>Rabault, Jean</creatorcontrib><creatorcontrib>Viquerat, Jonathan</creatorcontrib><creatorcontrib>Che, Zhizhao</creatorcontrib><creatorcontrib>Hachem, Elie</creatorcontrib><creatorcontrib>Reglade, Ulysse</creatorcontrib><title>Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film</title><title>AIP advances</title><description>Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance.</description><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Falling liquid films</subject><subject>Fluid mechanics</subject><subject>Invariance</subject><subject>Machine learning</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Modeling and Simulation</subject><subject>Multiphase flow</subject><subject>Physics</subject><subject>System effectiveness</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu3CAQhq2qlRqlOfQJitRTKzkFbIx9jKK0ibRSLu0ZjWHYsGJhA-yqeZU-bdl11KaXcgH9-vTPDP80zXtGLxkdui_sUrCOd3J81ZxxJsa243x4_eL9trnIeUPr6SdGx_6s-XXzc-ejKy6siY8avCtPBIIhJUHIHoqLATxx4QDJQdBISiQGs1sHgtaiLu6AVcAdSeiCjUnjFkMhHiGFo6uOoaToSbSkPCBhrXEVyIvvPuQCs0diwftTD-5x7wyxzm_fNW-qmvHi-T5vfny9-X59267uv91dX61aLZgsre2loZIJNsz9yERfx0ImB9CjmYQdQaCxhs89FbQHoxGp1FZ0eponLgZhu_PmbvE1ETZql9wW0pOK4NRJiGmtIBWnPSpNRzpryaZB216IGQZEPs8CuJwH6Ibq9WnxegD_j9Xt1UodNcp7ygRlB1bZDwurk8s1ABViAlVjEVxJQYcj8XEhdik-7jEXtYn7VP8tK15z5ryOJP_W1CnmnND-KcyoOu6FYup5Lyr7eWGzduUU7n_g3zEVt8c</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Belus, Vincent</creator><creator>Rabault, Jean</creator><creator>Viquerat, Jonathan</creator><creator>Che, Zhizhao</creator><creator>Hachem, Elie</creator><creator>Reglade, Ulysse</creator><general>American Institute of Physics</general><general>American Institute of Physics- AIP Publishing LLC</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7244-6592</orcidid><orcidid>https://orcid.org/0000-0002-5947-138X</orcidid><orcidid>https://orcid.org/0000-0002-0682-0603</orcidid><orcidid>https://orcid.org/0000-0002-6026-9250</orcidid><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid></search><sort><creationdate>20191201</creationdate><title>Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film</title><author>Belus, Vincent ; Rabault, Jean ; Viquerat, Jonathan ; Che, Zhizhao ; Hachem, Elie ; Reglade, Ulysse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Falling liquid films</topic><topic>Fluid mechanics</topic><topic>Invariance</topic><topic>Machine learning</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Modeling and Simulation</topic><topic>Multiphase flow</topic><topic>Physics</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belus, Vincent</creatorcontrib><creatorcontrib>Rabault, Jean</creatorcontrib><creatorcontrib>Viquerat, Jonathan</creatorcontrib><creatorcontrib>Che, Zhizhao</creatorcontrib><creatorcontrib>Hachem, Elie</creatorcontrib><creatorcontrib>Reglade, Ulysse</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belus, Vincent</au><au>Rabault, Jean</au><au>Viquerat, Jonathan</au><au>Che, Zhizhao</au><au>Hachem, Elie</au><au>Reglade, Ulysse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film</atitle><jtitle>AIP advances</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>12</issue><spage>125014</spage><epage>125014-13</epage><pages>125014-125014-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5132378</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7244-6592</orcidid><orcidid>https://orcid.org/0000-0002-5947-138X</orcidid><orcidid>https://orcid.org/0000-0002-0682-0603</orcidid><orcidid>https://orcid.org/0000-0002-6026-9250</orcidid><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2019-12, Vol.9 (12), p.125014-125014-13 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2323225047 |
source | NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Architecture Artificial Intelligence Computer Science Falling liquid films Fluid mechanics Invariance Machine learning Mathematical Physics Mechanics Modeling and Simulation Multiphase flow Physics System effectiveness |
title | Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20locality%20and%20translational%20invariance%20to%20design%20effective%20deep%20reinforcement%20learning%20control%20of%20the%201-dimensional%20unstable%20falling%20liquid%20film&rft.jtitle=AIP%20advances&rft.au=Belus,%20Vincent&rft.date=2019-12-01&rft.volume=9&rft.issue=12&rft.spage=125014&rft.epage=125014-13&rft.pages=125014-125014-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5132378&rft_dat=%3Cproquest_doaj_%3E2323225047%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323225047&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c080bc7196cf455ba6ee2bb5a27b6a36&rfr_iscdi=true |