Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore
The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events lead...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2019-12, Vol.1457 (1), p.142-157 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 142 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1457 |
creator | Algieri, Cristina Trombetti, Fabiana Pagliarani, Alessandra Ventrella, Vittoria Bernardini, Chiara Fabbri, Micaela Forni, Monica Nesci, Salvatore |
description | The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes.
By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore. |
doi_str_mv | 10.1111/nyas.14218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2323113047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323113047</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1918-8be28b12c918c0b37ddadefeac9e5c3fe5db70cb7c172caf9268a16acf0775b73</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWw4QSWWKIUP9I4WVYVBaRCkSgLVtbEdlRXaRJsFxRWHIEzchLcltnMzKdf8_gRuqRkRGPcND34EU0ZzY_QgIq0SLKMs2M0IESIJC8YP0Vn3q8JoSxPxQDZRxtatWob7SzUeArs-vf7B1SwHxCMxjM6W0QwWT6DN3jVa9fW_ZfxOBIMjcadazdtiCCsDO6M2xgobW1Dj4ODxttg2wZ3rTPn6KSC2puL_zxEr7Pb5fQ-mS_uHqaTedLRguZJXhqWl5Sp2ChScqE1aFMZUIUZK16ZsS4FUaVQVDAFVcGyHGgGqoofjkvBh-jqMDde9r41Psh1u3VNXCkZZ5xSTtKdih5Un7Y2veyc3YDrJSVy56Pc-Sj3Psqnt8nLvuJ_vK5sJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323113047</pqid></control><display><type>article</type><title>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</title><source>Access via Wiley Online Library</source><creator>Algieri, Cristina ; Trombetti, Fabiana ; Pagliarani, Alessandra ; Ventrella, Vittoria ; Bernardini, Chiara ; Fabbri, Micaela ; Forni, Monica ; Nesci, Salvatore</creator><creatorcontrib>Algieri, Cristina ; Trombetti, Fabiana ; Pagliarani, Alessandra ; Ventrella, Vittoria ; Bernardini, Chiara ; Fabbri, Micaela ; Forni, Monica ; Nesci, Salvatore</creatorcontrib><description>The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes.
By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14218</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Adenosine triphosphatase ; ATP ; ATP hydrolysis ; Calcium ; Calcium (mitochondrial) ; Calcium ions ; Calcium permeability ; Cell death ; divalent cofactors ; F1FO‐ATPase ; inhibition kinetics ; Magnesium ; Maintenance ; Membrane permeability ; Membrane potential ; Mitochondrial permeability transition pore ; partially purified F1 fraction ; Permeability ; Piceatannol ; Quercetin ; Resveratrol ; Retention capacity</subject><ispartof>Annals of the New York Academy of Sciences, 2019-12, Vol.1457 (1), p.142-157</ispartof><rights>2019 New York Academy of Sciences.</rights><rights>2019 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8569-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14218$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14218$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Algieri, Cristina</creatorcontrib><creatorcontrib>Trombetti, Fabiana</creatorcontrib><creatorcontrib>Pagliarani, Alessandra</creatorcontrib><creatorcontrib>Ventrella, Vittoria</creatorcontrib><creatorcontrib>Bernardini, Chiara</creatorcontrib><creatorcontrib>Fabbri, Micaela</creatorcontrib><creatorcontrib>Forni, Monica</creatorcontrib><creatorcontrib>Nesci, Salvatore</creatorcontrib><title>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</title><title>Annals of the New York Academy of Sciences</title><description>The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes.
By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.</description><subject>Adenosine triphosphatase</subject><subject>ATP</subject><subject>ATP hydrolysis</subject><subject>Calcium</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium ions</subject><subject>Calcium permeability</subject><subject>Cell death</subject><subject>divalent cofactors</subject><subject>F1FO‐ATPase</subject><subject>inhibition kinetics</subject><subject>Magnesium</subject><subject>Maintenance</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Mitochondrial permeability transition pore</subject><subject>partially purified F1 fraction</subject><subject>Permeability</subject><subject>Piceatannol</subject><subject>Quercetin</subject><subject>Resveratrol</subject><subject>Retention capacity</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWw4QSWWKIUP9I4WVYVBaRCkSgLVtbEdlRXaRJsFxRWHIEzchLcltnMzKdf8_gRuqRkRGPcND34EU0ZzY_QgIq0SLKMs2M0IESIJC8YP0Vn3q8JoSxPxQDZRxtatWob7SzUeArs-vf7B1SwHxCMxjM6W0QwWT6DN3jVa9fW_ZfxOBIMjcadazdtiCCsDO6M2xgobW1Dj4ODxttg2wZ3rTPn6KSC2puL_zxEr7Pb5fQ-mS_uHqaTedLRguZJXhqWl5Sp2ChScqE1aFMZUIUZK16ZsS4FUaVQVDAFVcGyHGgGqoofjkvBh-jqMDde9r41Psh1u3VNXCkZZ5xSTtKdih5Un7Y2veyc3YDrJSVy56Pc-Sj3Psqnt8nLvuJ_vK5sJA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Algieri, Cristina</creator><creator>Trombetti, Fabiana</creator><creator>Pagliarani, Alessandra</creator><creator>Ventrella, Vittoria</creator><creator>Bernardini, Chiara</creator><creator>Fabbri, Micaela</creator><creator>Forni, Monica</creator><creator>Nesci, Salvatore</creator><general>Wiley Subscription Services, Inc</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8569-7158</orcidid></search><sort><creationdate>201912</creationdate><title>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</title><author>Algieri, Cristina ; Trombetti, Fabiana ; Pagliarani, Alessandra ; Ventrella, Vittoria ; Bernardini, Chiara ; Fabbri, Micaela ; Forni, Monica ; Nesci, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1918-8be28b12c918c0b37ddadefeac9e5c3fe5db70cb7c172caf9268a16acf0775b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine triphosphatase</topic><topic>ATP</topic><topic>ATP hydrolysis</topic><topic>Calcium</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium ions</topic><topic>Calcium permeability</topic><topic>Cell death</topic><topic>divalent cofactors</topic><topic>F1FO‐ATPase</topic><topic>inhibition kinetics</topic><topic>Magnesium</topic><topic>Maintenance</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Mitochondrial permeability transition pore</topic><topic>partially purified F1 fraction</topic><topic>Permeability</topic><topic>Piceatannol</topic><topic>Quercetin</topic><topic>Resveratrol</topic><topic>Retention capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Algieri, Cristina</creatorcontrib><creatorcontrib>Trombetti, Fabiana</creatorcontrib><creatorcontrib>Pagliarani, Alessandra</creatorcontrib><creatorcontrib>Ventrella, Vittoria</creatorcontrib><creatorcontrib>Bernardini, Chiara</creatorcontrib><creatorcontrib>Fabbri, Micaela</creatorcontrib><creatorcontrib>Forni, Monica</creatorcontrib><creatorcontrib>Nesci, Salvatore</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Algieri, Cristina</au><au>Trombetti, Fabiana</au><au>Pagliarani, Alessandra</au><au>Ventrella, Vittoria</au><au>Bernardini, Chiara</au><au>Fabbri, Micaela</au><au>Forni, Monica</au><au>Nesci, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><date>2019-12</date><risdate>2019</risdate><volume>1457</volume><issue>1</issue><spage>142</spage><epage>157</epage><pages>142-157</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes.
By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/nyas.14218</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8569-7158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2019-12, Vol.1457 (1), p.142-157 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_journals_2323113047 |
source | Access via Wiley Online Library |
subjects | Adenosine triphosphatase ATP ATP hydrolysis Calcium Calcium (mitochondrial) Calcium ions Calcium permeability Cell death divalent cofactors F1FO‐ATPase inhibition kinetics Magnesium Maintenance Membrane permeability Membrane potential Mitochondrial permeability transition pore partially purified F1 fraction Permeability Piceatannol Quercetin Resveratrol Retention capacity |
title | Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Ca2+%E2%80%90activated%20F1FO%E2%80%90ATPase%20hydrolyzes%20ATP%20and%20promotes%20the%20permeability%20transition%20pore&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Algieri,%20Cristina&rft.date=2019-12&rft.volume=1457&rft.issue=1&rft.spage=142&rft.epage=157&rft.pages=142-157&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14218&rft_dat=%3Cproquest_wiley%3E2323113047%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323113047&rft_id=info:pmid/&rfr_iscdi=true |