Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore

The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2019-12, Vol.1457 (1), p.142-157
Hauptverfasser: Algieri, Cristina, Trombetti, Fabiana, Pagliarani, Alessandra, Ventrella, Vittoria, Bernardini, Chiara, Fabbri, Micaela, Forni, Monica, Nesci, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 142
container_title Annals of the New York Academy of Sciences
container_volume 1457
creator Algieri, Cristina
Trombetti, Fabiana
Pagliarani, Alessandra
Ventrella, Vittoria
Bernardini, Chiara
Fabbri, Micaela
Forni, Monica
Nesci, Salvatore
description The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes. By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.
doi_str_mv 10.1111/nyas.14218
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2323113047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323113047</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1918-8be28b12c918c0b37ddadefeac9e5c3fe5db70cb7c172caf9268a16acf0775b73</originalsourceid><addsrcrecordid>eNotkEtOwzAQhi0EEqWw4QSWWKIUP9I4WVYVBaRCkSgLVtbEdlRXaRJsFxRWHIEzchLcltnMzKdf8_gRuqRkRGPcND34EU0ZzY_QgIq0SLKMs2M0IESIJC8YP0Vn3q8JoSxPxQDZRxtatWob7SzUeArs-vf7B1SwHxCMxjM6W0QwWT6DN3jVa9fW_ZfxOBIMjcadazdtiCCsDO6M2xgobW1Dj4ODxttg2wZ3rTPn6KSC2puL_zxEr7Pb5fQ-mS_uHqaTedLRguZJXhqWl5Sp2ChScqE1aFMZUIUZK16ZsS4FUaVQVDAFVcGyHGgGqoofjkvBh-jqMDde9r41Psh1u3VNXCkZZ5xSTtKdih5Un7Y2veyc3YDrJSVy56Pc-Sj3Psqnt8nLvuJ_vK5sJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323113047</pqid></control><display><type>article</type><title>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</title><source>Access via Wiley Online Library</source><creator>Algieri, Cristina ; Trombetti, Fabiana ; Pagliarani, Alessandra ; Ventrella, Vittoria ; Bernardini, Chiara ; Fabbri, Micaela ; Forni, Monica ; Nesci, Salvatore</creator><creatorcontrib>Algieri, Cristina ; Trombetti, Fabiana ; Pagliarani, Alessandra ; Ventrella, Vittoria ; Bernardini, Chiara ; Fabbri, Micaela ; Forni, Monica ; Nesci, Salvatore</creatorcontrib><description>The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes. By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.14218</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Adenosine triphosphatase ; ATP ; ATP hydrolysis ; Calcium ; Calcium (mitochondrial) ; Calcium ions ; Calcium permeability ; Cell death ; divalent cofactors ; F1FO‐ATPase ; inhibition kinetics ; Magnesium ; Maintenance ; Membrane permeability ; Membrane potential ; Mitochondrial permeability transition pore ; partially purified F1 fraction ; Permeability ; Piceatannol ; Quercetin ; Resveratrol ; Retention capacity</subject><ispartof>Annals of the New York Academy of Sciences, 2019-12, Vol.1457 (1), p.142-157</ispartof><rights>2019 New York Academy of Sciences.</rights><rights>2019 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8569-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnyas.14218$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnyas.14218$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Algieri, Cristina</creatorcontrib><creatorcontrib>Trombetti, Fabiana</creatorcontrib><creatorcontrib>Pagliarani, Alessandra</creatorcontrib><creatorcontrib>Ventrella, Vittoria</creatorcontrib><creatorcontrib>Bernardini, Chiara</creatorcontrib><creatorcontrib>Fabbri, Micaela</creatorcontrib><creatorcontrib>Forni, Monica</creatorcontrib><creatorcontrib>Nesci, Salvatore</creatorcontrib><title>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</title><title>Annals of the New York Academy of Sciences</title><description>The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes. By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.</description><subject>Adenosine triphosphatase</subject><subject>ATP</subject><subject>ATP hydrolysis</subject><subject>Calcium</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium ions</subject><subject>Calcium permeability</subject><subject>Cell death</subject><subject>divalent cofactors</subject><subject>F1FO‐ATPase</subject><subject>inhibition kinetics</subject><subject>Magnesium</subject><subject>Maintenance</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Mitochondrial permeability transition pore</subject><subject>partially purified F1 fraction</subject><subject>Permeability</subject><subject>Piceatannol</subject><subject>Quercetin</subject><subject>Resveratrol</subject><subject>Retention capacity</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhi0EEqWw4QSWWKIUP9I4WVYVBaRCkSgLVtbEdlRXaRJsFxRWHIEzchLcltnMzKdf8_gRuqRkRGPcND34EU0ZzY_QgIq0SLKMs2M0IESIJC8YP0Vn3q8JoSxPxQDZRxtatWob7SzUeArs-vf7B1SwHxCMxjM6W0QwWT6DN3jVa9fW_ZfxOBIMjcadazdtiCCsDO6M2xgobW1Dj4ODxttg2wZ3rTPn6KSC2puL_zxEr7Pb5fQ-mS_uHqaTedLRguZJXhqWl5Sp2ChScqE1aFMZUIUZK16ZsS4FUaVQVDAFVcGyHGgGqoofjkvBh-jqMDde9r41Psh1u3VNXCkZZ5xSTtKdih5Un7Y2veyc3YDrJSVy56Pc-Sj3Psqnt8nLvuJ_vK5sJA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Algieri, Cristina</creator><creator>Trombetti, Fabiana</creator><creator>Pagliarani, Alessandra</creator><creator>Ventrella, Vittoria</creator><creator>Bernardini, Chiara</creator><creator>Fabbri, Micaela</creator><creator>Forni, Monica</creator><creator>Nesci, Salvatore</creator><general>Wiley Subscription Services, Inc</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8569-7158</orcidid></search><sort><creationdate>201912</creationdate><title>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</title><author>Algieri, Cristina ; Trombetti, Fabiana ; Pagliarani, Alessandra ; Ventrella, Vittoria ; Bernardini, Chiara ; Fabbri, Micaela ; Forni, Monica ; Nesci, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1918-8be28b12c918c0b37ddadefeac9e5c3fe5db70cb7c172caf9268a16acf0775b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine triphosphatase</topic><topic>ATP</topic><topic>ATP hydrolysis</topic><topic>Calcium</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium ions</topic><topic>Calcium permeability</topic><topic>Cell death</topic><topic>divalent cofactors</topic><topic>F1FO‐ATPase</topic><topic>inhibition kinetics</topic><topic>Magnesium</topic><topic>Maintenance</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Mitochondrial permeability transition pore</topic><topic>partially purified F1 fraction</topic><topic>Permeability</topic><topic>Piceatannol</topic><topic>Quercetin</topic><topic>Resveratrol</topic><topic>Retention capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Algieri, Cristina</creatorcontrib><creatorcontrib>Trombetti, Fabiana</creatorcontrib><creatorcontrib>Pagliarani, Alessandra</creatorcontrib><creatorcontrib>Ventrella, Vittoria</creatorcontrib><creatorcontrib>Bernardini, Chiara</creatorcontrib><creatorcontrib>Fabbri, Micaela</creatorcontrib><creatorcontrib>Forni, Monica</creatorcontrib><creatorcontrib>Nesci, Salvatore</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Algieri, Cristina</au><au>Trombetti, Fabiana</au><au>Pagliarani, Alessandra</au><au>Ventrella, Vittoria</au><au>Bernardini, Chiara</au><au>Fabbri, Micaela</au><au>Forni, Monica</au><au>Nesci, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><date>2019-12</date><risdate>2019</risdate><volume>1457</volume><issue>1</issue><spage>142</spage><epage>157</epage><pages>142-157</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>The properties of the mitochondrial F1FO‐ATPase catalytic site, which can bind Mg2+, Mn2+, or Ca2+ and hydrolyze ATP, were explored by inhibition kinetic analyses to cast light on the Ca2+‐activated F1FO‐ATPase connection with the permeability transition pore (PTP) that initiates cascade events leading to cell death. While the natural cofactor Mg2+ activates the F1FO‐ATPase in competition with Mn2+, Ca2+ is a noncompetitive inhibitor in the presence of Mg2+. Selective F1 inhibitors (Is‐F1), namely NBD‐Cl, piceatannol, resveratrol, and quercetin, exerted different mechanisms (mixed and uncompetitive inhibition) on either Ca2+‐ or Mg2+‐activated F1FO‐ATPase, consistent with the conclusion that the catalytic mechanism changes when Mg2+ is replaced by Ca2+. In a partially purified F1 domain preparation, Ca2+‐activated F1‐ATPase maintained Is‐F1 sensitivity, and enzyme inhibition was accompanied by the maintenance of the mitochondrial calcium retention capacity and membrane potential. The data strengthen the structural relationship between Ca2+‐activated F1FO‐ATPase and the PTP, and, in turn, on consequences, such as physiopathological cellular changes. By combining different biochemical strategies, we provide results obtained from experiments carried out in swine heart mitochondria and in partially purified F1 fractions that may contribute to either solving or rejecting the hypothesis that Ca2+‐ATP hydrolysis, supported by the F1FO‐ATPase, is required to open the permeability transition pore.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/nyas.14218</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8569-7158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2019-12, Vol.1457 (1), p.142-157
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_journals_2323113047
source Access via Wiley Online Library
subjects Adenosine triphosphatase
ATP
ATP hydrolysis
Calcium
Calcium (mitochondrial)
Calcium ions
Calcium permeability
Cell death
divalent cofactors
F1FO‐ATPase
inhibition kinetics
Magnesium
Maintenance
Membrane permeability
Membrane potential
Mitochondrial permeability transition pore
partially purified F1 fraction
Permeability
Piceatannol
Quercetin
Resveratrol
Retention capacity
title Mitochondrial Ca2+‐activated F1FO‐ATPase hydrolyzes ATP and promotes the permeability transition pore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Ca2+%E2%80%90activated%20F1FO%E2%80%90ATPase%20hydrolyzes%20ATP%20and%20promotes%20the%20permeability%20transition%20pore&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Algieri,%20Cristina&rft.date=2019-12&rft.volume=1457&rft.issue=1&rft.spage=142&rft.epage=157&rft.pages=142-157&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/nyas.14218&rft_dat=%3Cproquest_wiley%3E2323113047%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323113047&rft_id=info:pmid/&rfr_iscdi=true