Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix

Self-healing and shape-memory solid polymer electrolytes (SSSPEs) based on poly(vinyl alcohol) (PVA) with ureidopyrimidinone (UPy) and poly(ethylene glycol) (PEG) units (PVA-UPy-PEG) were successfully fabricated by the reactions of different chain length epoxide functionalized-PEG and 2(6-isocyanato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer chemistry 2019-12, Vol.1 (48), p.6561-6569
Hauptverfasser: Jo, Ye Hyang, Zhou, Binghua, Jiang, Ke, Li, Shaoqiao, Zuo, Cai, Gan, Huihui, He, Dan, Zhou, Xingping, Xue, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6569
container_issue 48
container_start_page 6561
container_title Polymer chemistry
container_volume 1
creator Jo, Ye Hyang
Zhou, Binghua
Jiang, Ke
Li, Shaoqiao
Zuo, Cai
Gan, Huihui
He, Dan
Zhou, Xingping
Xue, Zhigang
description Self-healing and shape-memory solid polymer electrolytes (SSSPEs) based on poly(vinyl alcohol) (PVA) with ureidopyrimidinone (UPy) and poly(ethylene glycol) (PEG) units (PVA-UPy-PEG) were successfully fabricated by the reactions of different chain length epoxide functionalized-PEG and 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1 H ]-pyrimidinone (UPy-NCO) with the hydroxyl of PVA. The SSSPE with the longest PEG side chain (PVA-UPy-PEG750) exhibited good thermal stability until 254 C, a low glass transition temperature (44.8 C), excellent self-healing and shape-memory performance, and high tensile stress. The PVA-UPy-PEG750 also showed a high ionic conductivity of 1.51 10 4 S cm 1 with an EO/Li + ratio of 11:1 at 60 C, wide electrochemical window (5.0 V vs. Li/Li + ), and improved lithium-ion transference number ( t Li + = 0.34). Moreover, the lithium plating/stripping behavior of SSSPEs indicated the improved interfacial stability between the polymer electrolyte and the lithium metal electrode. The Li/PVA-UPy-PEG750/LiFePO 4 cell exhibited a higher initial discharge capacity of 145 mA h g 1 and maintained a discharge capacity of 117 mA h g 1 after 150 cycles and a coulombic efficiency of 99% with 0.1C at 60 C. The SSSPE could be a promising candidate as the all-solid-state polymer electrolyte for lithium-ion batteries. This article reports PVA-based electrolytes with supramolecular networks formed via quadruple hydrogen bonding for lithium-ion batteries.
doi_str_mv 10.1039/c9py01406c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2323105190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323105190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-edc0911fa9fb9c6c4e0a8a744e5faae917cd0c753a486a31620861627ea192283</originalsourceid><addsrcrecordid>eNpFkctLxDAQxoMouKx78S4EvKhQTZq-cpTiCxYU1IOnMptOt1nSh0lW7dW_3Lor6xzmwfz4Br4h5JizS86EvFKyHxiPWKL2yISnsQykTML9XR9Hh2Tm3IqNIXgUimRCvp_RVEGNYHS7pNCW1NXQY9Bg09mBus7okvadGRq0FA0qb8fBo6Of2te01suaNqhqaLUCQ5232C7HRQVKG-3BY0kXA4WNxtmHbgdDwaiu7sw5bcBb_XVEDiowDmd_dUpeb29e8vtg_nj3kF_PAxVm3AdYKiY5r0BWC6kSFSGDDNIowrgCQMlTVTKVxgKiLAHBk5BlyZhTBC7DMBNTcrrV7W33vkbni1W3tu14sghFKDiLuWQjdbGllO2cs1gVvdUN2KHgrPi1ucjl09vG5nyET7awdWrH_b9B_AC1KXvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323105190</pqid></control><display><type>article</type><title>Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix</title><source>Royal Society Of Chemistry Journals</source><creator>Jo, Ye Hyang ; Zhou, Binghua ; Jiang, Ke ; Li, Shaoqiao ; Zuo, Cai ; Gan, Huihui ; He, Dan ; Zhou, Xingping ; Xue, Zhigang</creator><creatorcontrib>Jo, Ye Hyang ; Zhou, Binghua ; Jiang, Ke ; Li, Shaoqiao ; Zuo, Cai ; Gan, Huihui ; He, Dan ; Zhou, Xingping ; Xue, Zhigang</creatorcontrib><description>Self-healing and shape-memory solid polymer electrolytes (SSSPEs) based on poly(vinyl alcohol) (PVA) with ureidopyrimidinone (UPy) and poly(ethylene glycol) (PEG) units (PVA-UPy-PEG) were successfully fabricated by the reactions of different chain length epoxide functionalized-PEG and 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1 H ]-pyrimidinone (UPy-NCO) with the hydroxyl of PVA. The SSSPE with the longest PEG side chain (PVA-UPy-PEG750) exhibited good thermal stability until 254 C, a low glass transition temperature (44.8 C), excellent self-healing and shape-memory performance, and high tensile stress. The PVA-UPy-PEG750 also showed a high ionic conductivity of 1.51 10 4 S cm 1 with an EO/Li + ratio of 11:1 at 60 C, wide electrochemical window (5.0 V vs. Li/Li + ), and improved lithium-ion transference number ( t Li + = 0.34). Moreover, the lithium plating/stripping behavior of SSSPEs indicated the improved interfacial stability between the polymer electrolyte and the lithium metal electrode. The Li/PVA-UPy-PEG750/LiFePO 4 cell exhibited a higher initial discharge capacity of 145 mA h g 1 and maintained a discharge capacity of 117 mA h g 1 after 150 cycles and a coulombic efficiency of 99% with 0.1C at 60 C. The SSSPE could be a promising candidate as the all-solid-state polymer electrolyte for lithium-ion batteries. This article reports PVA-based electrolytes with supramolecular networks formed via quadruple hydrogen bonding for lithium-ion batteries.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/c9py01406c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohol ; Discharge ; Electrolytes ; Glass transition temperature ; Interface stability ; Ion currents ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Polyethylene glycol ; Polymer chemistry ; Polymers ; Polyvinyl alcohol ; Rechargeable batteries ; Self healing materials ; Shape memory ; Solid electrolytes ; Tensile stress ; Thermal stability</subject><ispartof>Polymer chemistry, 2019-12, Vol.1 (48), p.6561-6569</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-edc0911fa9fb9c6c4e0a8a744e5faae917cd0c753a486a31620861627ea192283</citedby><cites>FETCH-LOGICAL-c281t-edc0911fa9fb9c6c4e0a8a744e5faae917cd0c753a486a31620861627ea192283</cites><orcidid>0000-0003-2335-9537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jo, Ye Hyang</creatorcontrib><creatorcontrib>Zhou, Binghua</creatorcontrib><creatorcontrib>Jiang, Ke</creatorcontrib><creatorcontrib>Li, Shaoqiao</creatorcontrib><creatorcontrib>Zuo, Cai</creatorcontrib><creatorcontrib>Gan, Huihui</creatorcontrib><creatorcontrib>He, Dan</creatorcontrib><creatorcontrib>Zhou, Xingping</creatorcontrib><creatorcontrib>Xue, Zhigang</creatorcontrib><title>Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix</title><title>Polymer chemistry</title><description>Self-healing and shape-memory solid polymer electrolytes (SSSPEs) based on poly(vinyl alcohol) (PVA) with ureidopyrimidinone (UPy) and poly(ethylene glycol) (PEG) units (PVA-UPy-PEG) were successfully fabricated by the reactions of different chain length epoxide functionalized-PEG and 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1 H ]-pyrimidinone (UPy-NCO) with the hydroxyl of PVA. The SSSPE with the longest PEG side chain (PVA-UPy-PEG750) exhibited good thermal stability until 254 C, a low glass transition temperature (44.8 C), excellent self-healing and shape-memory performance, and high tensile stress. The PVA-UPy-PEG750 also showed a high ionic conductivity of 1.51 10 4 S cm 1 with an EO/Li + ratio of 11:1 at 60 C, wide electrochemical window (5.0 V vs. Li/Li + ), and improved lithium-ion transference number ( t Li + = 0.34). Moreover, the lithium plating/stripping behavior of SSSPEs indicated the improved interfacial stability between the polymer electrolyte and the lithium metal electrode. The Li/PVA-UPy-PEG750/LiFePO 4 cell exhibited a higher initial discharge capacity of 145 mA h g 1 and maintained a discharge capacity of 117 mA h g 1 after 150 cycles and a coulombic efficiency of 99% with 0.1C at 60 C. The SSSPE could be a promising candidate as the all-solid-state polymer electrolyte for lithium-ion batteries. This article reports PVA-based electrolytes with supramolecular networks formed via quadruple hydrogen bonding for lithium-ion batteries.</description><subject>Alcohol</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Glass transition temperature</subject><subject>Interface stability</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Polyethylene glycol</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Rechargeable batteries</subject><subject>Self healing materials</subject><subject>Shape memory</subject><subject>Solid electrolytes</subject><subject>Tensile stress</subject><subject>Thermal stability</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkctLxDAQxoMouKx78S4EvKhQTZq-cpTiCxYU1IOnMptOt1nSh0lW7dW_3Lor6xzmwfz4Br4h5JizS86EvFKyHxiPWKL2yISnsQykTML9XR9Hh2Tm3IqNIXgUimRCvp_RVEGNYHS7pNCW1NXQY9Bg09mBus7okvadGRq0FA0qb8fBo6Of2te01suaNqhqaLUCQ5232C7HRQVKG-3BY0kXA4WNxtmHbgdDwaiu7sw5bcBb_XVEDiowDmd_dUpeb29e8vtg_nj3kF_PAxVm3AdYKiY5r0BWC6kSFSGDDNIowrgCQMlTVTKVxgKiLAHBk5BlyZhTBC7DMBNTcrrV7W33vkbni1W3tu14sghFKDiLuWQjdbGllO2cs1gVvdUN2KHgrPi1ucjl09vG5nyET7awdWrH_b9B_AC1KXvY</recordid><startdate>20191228</startdate><enddate>20191228</enddate><creator>Jo, Ye Hyang</creator><creator>Zhou, Binghua</creator><creator>Jiang, Ke</creator><creator>Li, Shaoqiao</creator><creator>Zuo, Cai</creator><creator>Gan, Huihui</creator><creator>He, Dan</creator><creator>Zhou, Xingping</creator><creator>Xue, Zhigang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2335-9537</orcidid></search><sort><creationdate>20191228</creationdate><title>Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix</title><author>Jo, Ye Hyang ; Zhou, Binghua ; Jiang, Ke ; Li, Shaoqiao ; Zuo, Cai ; Gan, Huihui ; He, Dan ; Zhou, Xingping ; Xue, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-edc0911fa9fb9c6c4e0a8a744e5faae917cd0c753a486a31620861627ea192283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcohol</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Glass transition temperature</topic><topic>Interface stability</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Polyethylene glycol</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Rechargeable batteries</topic><topic>Self healing materials</topic><topic>Shape memory</topic><topic>Solid electrolytes</topic><topic>Tensile stress</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Ye Hyang</creatorcontrib><creatorcontrib>Zhou, Binghua</creatorcontrib><creatorcontrib>Jiang, Ke</creatorcontrib><creatorcontrib>Li, Shaoqiao</creatorcontrib><creatorcontrib>Zuo, Cai</creatorcontrib><creatorcontrib>Gan, Huihui</creatorcontrib><creatorcontrib>He, Dan</creatorcontrib><creatorcontrib>Zhou, Xingping</creatorcontrib><creatorcontrib>Xue, Zhigang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Ye Hyang</au><au>Zhou, Binghua</au><au>Jiang, Ke</au><au>Li, Shaoqiao</au><au>Zuo, Cai</au><au>Gan, Huihui</au><au>He, Dan</au><au>Zhou, Xingping</au><au>Xue, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix</atitle><jtitle>Polymer chemistry</jtitle><date>2019-12-28</date><risdate>2019</risdate><volume>1</volume><issue>48</issue><spage>6561</spage><epage>6569</epage><pages>6561-6569</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>Self-healing and shape-memory solid polymer electrolytes (SSSPEs) based on poly(vinyl alcohol) (PVA) with ureidopyrimidinone (UPy) and poly(ethylene glycol) (PEG) units (PVA-UPy-PEG) were successfully fabricated by the reactions of different chain length epoxide functionalized-PEG and 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1 H ]-pyrimidinone (UPy-NCO) with the hydroxyl of PVA. The SSSPE with the longest PEG side chain (PVA-UPy-PEG750) exhibited good thermal stability until 254 C, a low glass transition temperature (44.8 C), excellent self-healing and shape-memory performance, and high tensile stress. The PVA-UPy-PEG750 also showed a high ionic conductivity of 1.51 10 4 S cm 1 with an EO/Li + ratio of 11:1 at 60 C, wide electrochemical window (5.0 V vs. Li/Li + ), and improved lithium-ion transference number ( t Li + = 0.34). Moreover, the lithium plating/stripping behavior of SSSPEs indicated the improved interfacial stability between the polymer electrolyte and the lithium metal electrode. The Li/PVA-UPy-PEG750/LiFePO 4 cell exhibited a higher initial discharge capacity of 145 mA h g 1 and maintained a discharge capacity of 117 mA h g 1 after 150 cycles and a coulombic efficiency of 99% with 0.1C at 60 C. The SSSPE could be a promising candidate as the all-solid-state polymer electrolyte for lithium-ion batteries. This article reports PVA-based electrolytes with supramolecular networks formed via quadruple hydrogen bonding for lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9py01406c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2335-9537</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-9954
ispartof Polymer chemistry, 2019-12, Vol.1 (48), p.6561-6569
issn 1759-9954
1759-9962
language eng
recordid cdi_proquest_journals_2323105190
source Royal Society Of Chemistry Journals
subjects Alcohol
Discharge
Electrolytes
Glass transition temperature
Interface stability
Ion currents
Lithium
Lithium-ion batteries
Molten salt electrolytes
Polyethylene glycol
Polymer chemistry
Polymers
Polyvinyl alcohol
Rechargeable batteries
Self healing materials
Shape memory
Solid electrolytes
Tensile stress
Thermal stability
title Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healing%20and%20shape-memory%20solid%20polymer%20electrolytes%20with%20high%20mechanical%20strength%20facilitated%20by%20a%20poly(vinyl%20alcohol)%20matrix&rft.jtitle=Polymer%20chemistry&rft.au=Jo,%20Ye%20Hyang&rft.date=2019-12-28&rft.volume=1&rft.issue=48&rft.spage=6561&rft.epage=6569&rft.pages=6561-6569&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/c9py01406c&rft_dat=%3Cproquest_cross%3E2323105190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323105190&rft_id=info:pmid/&rfr_iscdi=true