Thermodynamic equilibrium in general relativity
The thermodynamic equilibrium condition for a static self-gravitating fluid in the Einstein theory is defined by the Tolman-Ehrenfest temperature law, Tg00(xi)=constant, according to which the proper temperature depends explicitly on the position within the medium through the metric coefficient g00(...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2019-11, Vol.100 (10), p.1, Article 104042 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 100 |
creator | Lima, J. A. S. Del Popolo, A. Plastino, A. R. |
description | The thermodynamic equilibrium condition for a static self-gravitating fluid in the Einstein theory is defined by the Tolman-Ehrenfest temperature law, Tg00(xi)=constant, according to which the proper temperature depends explicitly on the position within the medium through the metric coefficient g00(xi). By assuming the validity of Tolman-Ehrenfest "pocket temperature," Klein also proved a similar relation for the chemical potential, namely, μg00(xi)=constant. In this paper we prove that a more general relation uniting both quantities holds regardless of the equation of state satisfied by the medium, and that the original Tolman-Ehrenfest law form is valid only if the chemical potential vanishes identically. In the general case of equilibrium, the temperature and the chemical potential are intertwined in such a way that only a definite (position dependent) relation uniting both quantities is obeyed. As an illustration of these results, the temperature expressions for an isothermal gas (finite spherical distribution) and a neutron star are also determined. |
doi_str_mv | 10.1103/PhysRevD.100.104042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2323058402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323058402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-936b86e32df8f85b0fb57ee2ac69337d4684b42f8bf2b00f2eef1751cd907a5e3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsGh_gZuA67R3HslMllKfUFCkrsNMcsdOyaOdSQr5945WXd3Dx-Fc-Ai5obCgFPjybTuFdzzeLyhEAgIEOyMzJiSkAKw4_88ULsk8hB3EmEMhKZ2R5WaLvu3rqdOtqxI8jK5xxruxTVyXfGKHXjeJx0YP7uiG6ZpcWN0EnP_eK_Lx-LBZPafr16eX1d06rZiUQ1rw3KgcOautsiozYE0mEZmu8oJzWYtcCSOYVcYyA2AZoqUyo1VdgNQZ8itye9rd-_4wYhjKXT_6Lr4sGWccMiWAxRY_tSrfh-DRlnvvWu2nkkL5Laf8kxNBJD9y-Bcy1ljm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323058402</pqid></control><display><type>article</type><title>Thermodynamic equilibrium in general relativity</title><source>American Physical Society Journals</source><creator>Lima, J. A. S. ; Del Popolo, A. ; Plastino, A. R.</creator><creatorcontrib>Lima, J. A. S. ; Del Popolo, A. ; Plastino, A. R.</creatorcontrib><description>The thermodynamic equilibrium condition for a static self-gravitating fluid in the Einstein theory is defined by the Tolman-Ehrenfest temperature law, Tg00(xi)=constant, according to which the proper temperature depends explicitly on the position within the medium through the metric coefficient g00(xi). By assuming the validity of Tolman-Ehrenfest "pocket temperature," Klein also proved a similar relation for the chemical potential, namely, μg00(xi)=constant. In this paper we prove that a more general relation uniting both quantities holds regardless of the equation of state satisfied by the medium, and that the original Tolman-Ehrenfest law form is valid only if the chemical potential vanishes identically. In the general case of equilibrium, the temperature and the chemical potential are intertwined in such a way that only a definite (position dependent) relation uniting both quantities is obeyed. As an illustration of these results, the temperature expressions for an isothermal gas (finite spherical distribution) and a neutron star are also determined.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.104042</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Chemical potential ; Equations of state ; Equilibrium ; Gravitation ; Neutron stars ; Organic chemistry ; Relativity ; Thermodynamic equilibrium</subject><ispartof>Physical review. D, 2019-11, Vol.100 (10), p.1, Article 104042</ispartof><rights>Copyright American Physical Society Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-936b86e32df8f85b0fb57ee2ac69337d4684b42f8bf2b00f2eef1751cd907a5e3</citedby><cites>FETCH-LOGICAL-c277t-936b86e32df8f85b0fb57ee2ac69337d4684b42f8bf2b00f2eef1751cd907a5e3</cites><orcidid>0000-0002-9057-0239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Lima, J. A. S.</creatorcontrib><creatorcontrib>Del Popolo, A.</creatorcontrib><creatorcontrib>Plastino, A. R.</creatorcontrib><title>Thermodynamic equilibrium in general relativity</title><title>Physical review. D</title><description>The thermodynamic equilibrium condition for a static self-gravitating fluid in the Einstein theory is defined by the Tolman-Ehrenfest temperature law, Tg00(xi)=constant, according to which the proper temperature depends explicitly on the position within the medium through the metric coefficient g00(xi). By assuming the validity of Tolman-Ehrenfest "pocket temperature," Klein also proved a similar relation for the chemical potential, namely, μg00(xi)=constant. In this paper we prove that a more general relation uniting both quantities holds regardless of the equation of state satisfied by the medium, and that the original Tolman-Ehrenfest law form is valid only if the chemical potential vanishes identically. In the general case of equilibrium, the temperature and the chemical potential are intertwined in such a way that only a definite (position dependent) relation uniting both quantities is obeyed. As an illustration of these results, the temperature expressions for an isothermal gas (finite spherical distribution) and a neutron star are also determined.</description><subject>Chemical potential</subject><subject>Equations of state</subject><subject>Equilibrium</subject><subject>Gravitation</subject><subject>Neutron stars</subject><subject>Organic chemistry</subject><subject>Relativity</subject><subject>Thermodynamic equilibrium</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsGh_gZuA67R3HslMllKfUFCkrsNMcsdOyaOdSQr5945WXd3Dx-Fc-Ai5obCgFPjybTuFdzzeLyhEAgIEOyMzJiSkAKw4_88ULsk8hB3EmEMhKZ2R5WaLvu3rqdOtqxI8jK5xxruxTVyXfGKHXjeJx0YP7uiG6ZpcWN0EnP_eK_Lx-LBZPafr16eX1d06rZiUQ1rw3KgcOautsiozYE0mEZmu8oJzWYtcCSOYVcYyA2AZoqUyo1VdgNQZ8itye9rd-_4wYhjKXT_6Lr4sGWccMiWAxRY_tSrfh-DRlnvvWu2nkkL5Laf8kxNBJD9y-Bcy1ljm</recordid><startdate>20191120</startdate><enddate>20191120</enddate><creator>Lima, J. A. S.</creator><creator>Del Popolo, A.</creator><creator>Plastino, A. R.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9057-0239</orcidid></search><sort><creationdate>20191120</creationdate><title>Thermodynamic equilibrium in general relativity</title><author>Lima, J. A. S. ; Del Popolo, A. ; Plastino, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-936b86e32df8f85b0fb57ee2ac69337d4684b42f8bf2b00f2eef1751cd907a5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical potential</topic><topic>Equations of state</topic><topic>Equilibrium</topic><topic>Gravitation</topic><topic>Neutron stars</topic><topic>Organic chemistry</topic><topic>Relativity</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, J. A. S.</creatorcontrib><creatorcontrib>Del Popolo, A.</creatorcontrib><creatorcontrib>Plastino, A. R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, J. A. S.</au><au>Del Popolo, A.</au><au>Plastino, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic equilibrium in general relativity</atitle><jtitle>Physical review. D</jtitle><date>2019-11-20</date><risdate>2019</risdate><volume>100</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>104042</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The thermodynamic equilibrium condition for a static self-gravitating fluid in the Einstein theory is defined by the Tolman-Ehrenfest temperature law, Tg00(xi)=constant, according to which the proper temperature depends explicitly on the position within the medium through the metric coefficient g00(xi). By assuming the validity of Tolman-Ehrenfest "pocket temperature," Klein also proved a similar relation for the chemical potential, namely, μg00(xi)=constant. In this paper we prove that a more general relation uniting both quantities holds regardless of the equation of state satisfied by the medium, and that the original Tolman-Ehrenfest law form is valid only if the chemical potential vanishes identically. In the general case of equilibrium, the temperature and the chemical potential are intertwined in such a way that only a definite (position dependent) relation uniting both quantities is obeyed. As an illustration of these results, the temperature expressions for an isothermal gas (finite spherical distribution) and a neutron star are also determined.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.104042</doi><orcidid>https://orcid.org/0000-0002-9057-0239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2019-11, Vol.100 (10), p.1, Article 104042 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2323058402 |
source | American Physical Society Journals |
subjects | Chemical potential Equations of state Equilibrium Gravitation Neutron stars Organic chemistry Relativity Thermodynamic equilibrium |
title | Thermodynamic equilibrium in general relativity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20equilibrium%20in%20general%20relativity&rft.jtitle=Physical%20review.%20D&rft.au=Lima,%20J.%E2%80%89A.%E2%80%89S.&rft.date=2019-11-20&rft.volume=100&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=104042&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.104042&rft_dat=%3Cproquest_cross%3E2323058402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323058402&rft_id=info:pmid/&rfr_iscdi=true |