A two-level additive Schwarz method for a kind of tensor complementarity problem

In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-01, Vol.584, p.394-408
Hauptverfasser: Xie, Shui-Lian, Xu, Hong-Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue
container_start_page 394
container_title Linear algebra and its applications
container_volume 584
creator Xie, Shui-Lian
Xu, Hong-Ru
description In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.
doi_str_mv 10.1016/j.laa.2019.09.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322899882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519304148</els_id><sourcerecordid>2322899882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4AbwHPW_Ox2SR4KsUvKCio55Amb2nqdlOzaUv99UbqWRh4vMfMm2EQuqZkQgltbleTztoJI1RPSAETJ2hEleQVVaI5RSNCWF1xqcU5uhiGFSGkloSN0OsU532sOthBh633IYcd4De33Nv0jdeQl9HjNiZs8WfoPY4tztAP5eDietPBGvpsU8gHvElxUfZLdNbaboCrvzlGHw_377Onav7y-DybzivHG5UrrhZM8rZppFBSWNBCEyVbq3TrHeFeayqZstZqxzivRS1t66XwWkmgrqn5GN0c_xbfry0M2aziNvXF0jDOmNJaKVZY9MhyKQ5DgtZsUljbdDCUmN_izMqU4sxvcYYUMFE0d0cNlPi7AMkMLkDvwIcELhsfwz_qH5XidUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322899882</pqid></control><display><type>article</type><title>A two-level additive Schwarz method for a kind of tensor complementarity problem</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xie, Shui-Lian ; Xu, Hong-Ru</creator><creatorcontrib>Xie, Shui-Lian ; Xu, Hong-Ru</creatorcontrib><description>In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.09.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Convergence ; Linear algebra ; Mathematical analysis ; Tensor complementarity problem ; Tensors ; Two-level ; Z-tensor</subject><ispartof>Linear algebra and its applications, 2020-01, Vol.584, p.394-408</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</citedby><cites>FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2019.09.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xie, Shui-Lian</creatorcontrib><creatorcontrib>Xu, Hong-Ru</creatorcontrib><title>A two-level additive Schwarz method for a kind of tensor complementarity problem</title><title>Linear algebra and its applications</title><description>In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.</description><subject>Convergence</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Tensor complementarity problem</subject><subject>Tensors</subject><subject>Two-level</subject><subject>Z-tensor</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4AbwHPW_Ox2SR4KsUvKCio55Amb2nqdlOzaUv99UbqWRh4vMfMm2EQuqZkQgltbleTztoJI1RPSAETJ2hEleQVVaI5RSNCWF1xqcU5uhiGFSGkloSN0OsU532sOthBh633IYcd4De33Nv0jdeQl9HjNiZs8WfoPY4tztAP5eDietPBGvpsU8gHvElxUfZLdNbaboCrvzlGHw_377Onav7y-DybzivHG5UrrhZM8rZppFBSWNBCEyVbq3TrHeFeayqZstZqxzivRS1t66XwWkmgrqn5GN0c_xbfry0M2aziNvXF0jDOmNJaKVZY9MhyKQ5DgtZsUljbdDCUmN_izMqU4sxvcYYUMFE0d0cNlPi7AMkMLkDvwIcELhsfwz_qH5XidUI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Xie, Shui-Lian</creator><creator>Xu, Hong-Ru</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>A two-level additive Schwarz method for a kind of tensor complementarity problem</title><author>Xie, Shui-Lian ; Xu, Hong-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Tensor complementarity problem</topic><topic>Tensors</topic><topic>Two-level</topic><topic>Z-tensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shui-Lian</creatorcontrib><creatorcontrib>Xu, Hong-Ru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shui-Lian</au><au>Xu, Hong-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-level additive Schwarz method for a kind of tensor complementarity problem</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>584</volume><spage>394</spage><epage>408</epage><pages>394-408</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.09.025</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-01, Vol.584, p.394-408
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2322899882
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Convergence
Linear algebra
Mathematical analysis
Tensor complementarity problem
Tensors
Two-level
Z-tensor
title A two-level additive Schwarz method for a kind of tensor complementarity problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-level%20additive%20Schwarz%20method%20for%20a%20kind%20of%20tensor%20complementarity%20problem&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Xie,%20Shui-Lian&rft.date=2020-01-01&rft.volume=584&rft.spage=394&rft.epage=408&rft.pages=394-408&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.09.025&rft_dat=%3Cproquest_cross%3E2322899882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322899882&rft_id=info:pmid/&rft_els_id=S0024379519304148&rfr_iscdi=true