A two-level additive Schwarz method for a kind of tensor complementarity problem
In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed me...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-01, Vol.584, p.394-408 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | |
container_start_page | 394 |
container_title | Linear algebra and its applications |
container_volume | 584 |
creator | Xie, Shui-Lian Xu, Hong-Ru |
description | In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method. |
doi_str_mv | 10.1016/j.laa.2019.09.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322899882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519304148</els_id><sourcerecordid>2322899882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4AbwHPW_Ox2SR4KsUvKCio55Amb2nqdlOzaUv99UbqWRh4vMfMm2EQuqZkQgltbleTztoJI1RPSAETJ2hEleQVVaI5RSNCWF1xqcU5uhiGFSGkloSN0OsU532sOthBh633IYcd4De33Nv0jdeQl9HjNiZs8WfoPY4tztAP5eDietPBGvpsU8gHvElxUfZLdNbaboCrvzlGHw_377Onav7y-DybzivHG5UrrhZM8rZppFBSWNBCEyVbq3TrHeFeayqZstZqxzivRS1t66XwWkmgrqn5GN0c_xbfry0M2aziNvXF0jDOmNJaKVZY9MhyKQ5DgtZsUljbdDCUmN_izMqU4sxvcYYUMFE0d0cNlPi7AMkMLkDvwIcELhsfwz_qH5XidUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322899882</pqid></control><display><type>article</type><title>A two-level additive Schwarz method for a kind of tensor complementarity problem</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xie, Shui-Lian ; Xu, Hong-Ru</creator><creatorcontrib>Xie, Shui-Lian ; Xu, Hong-Ru</creatorcontrib><description>In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.09.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Convergence ; Linear algebra ; Mathematical analysis ; Tensor complementarity problem ; Tensors ; Two-level ; Z-tensor</subject><ispartof>Linear algebra and its applications, 2020-01, Vol.584, p.394-408</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</citedby><cites>FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2019.09.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xie, Shui-Lian</creatorcontrib><creatorcontrib>Xu, Hong-Ru</creatorcontrib><title>A two-level additive Schwarz method for a kind of tensor complementarity problem</title><title>Linear algebra and its applications</title><description>In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.</description><subject>Convergence</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Tensor complementarity problem</subject><subject>Tensors</subject><subject>Two-level</subject><subject>Z-tensor</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4AbwHPW_Ox2SR4KsUvKCio55Amb2nqdlOzaUv99UbqWRh4vMfMm2EQuqZkQgltbleTztoJI1RPSAETJ2hEleQVVaI5RSNCWF1xqcU5uhiGFSGkloSN0OsU532sOthBh633IYcd4De33Nv0jdeQl9HjNiZs8WfoPY4tztAP5eDietPBGvpsU8gHvElxUfZLdNbaboCrvzlGHw_377Onav7y-DybzivHG5UrrhZM8rZppFBSWNBCEyVbq3TrHeFeayqZstZqxzivRS1t66XwWkmgrqn5GN0c_xbfry0M2aziNvXF0jDOmNJaKVZY9MhyKQ5DgtZsUljbdDCUmN_izMqU4sxvcYYUMFE0d0cNlPi7AMkMLkDvwIcELhsfwz_qH5XidUI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Xie, Shui-Lian</creator><creator>Xu, Hong-Ru</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>A two-level additive Schwarz method for a kind of tensor complementarity problem</title><author>Xie, Shui-Lian ; Xu, Hong-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-38b273f6675875ae959087fa89fdc03d991728aaa9c2334547afd75d987e1c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Tensor complementarity problem</topic><topic>Tensors</topic><topic>Two-level</topic><topic>Z-tensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shui-Lian</creatorcontrib><creatorcontrib>Xu, Hong-Ru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shui-Lian</au><au>Xu, Hong-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-level additive Schwarz method for a kind of tensor complementarity problem</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>584</volume><spage>394</spage><epage>408</epage><pages>394-408</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper, we present a two-level additive Schwarz method for a kind of tensor complementarity problem (TCP). The method is proved to be convergent monotonically and can reach the solution within finite steps. We report some preliminary numerical results to test the efficiency of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.09.025</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2020-01, Vol.584, p.394-408 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2322899882 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Convergence Linear algebra Mathematical analysis Tensor complementarity problem Tensors Two-level Z-tensor |
title | A two-level additive Schwarz method for a kind of tensor complementarity problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-level%20additive%20Schwarz%20method%20for%20a%20kind%20of%20tensor%20complementarity%20problem&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Xie,%20Shui-Lian&rft.date=2020-01-01&rft.volume=584&rft.spage=394&rft.epage=408&rft.pages=394-408&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.09.025&rft_dat=%3Cproquest_cross%3E2322899882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322899882&rft_id=info:pmid/&rft_els_id=S0024379519304148&rfr_iscdi=true |