On the eigenstructure of sparse matrices related to the prime number theorem

The sparse (0,1) matrix that was introduced by Redheffer has the property that its nth leading principal minor equals ∑i≤nμ(i), where μ is the Möbius function. Recently, a substantially sparser (0,1) matrix that possesses the same property has been described. Let Rn denote the nth leading principal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-01, Vol.584, p.409-430
1. Verfasser: Kline, Jeffery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue
container_start_page 409
container_title Linear algebra and its applications
container_volume 584
creator Kline, Jeffery
description The sparse (0,1) matrix that was introduced by Redheffer has the property that its nth leading principal minor equals ∑i≤nμ(i), where μ is the Möbius function. Recently, a substantially sparser (0,1) matrix that possesses the same property has been described. Let Rn denote the nth leading principal submatrix of this sparser matrix. Our main result establishes asymptotically tight estimates for the two dominant eigenvalues of Rn. We also state explicit formulae for the eigenvectors of Rn that are associated with the eigenvalues that are different from 1. Finally, we state several conjectures about the eigenstructure of a related class of matrix.
doi_str_mv 10.1016/j.laa.2019.09.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322881745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519304057</els_id><sourcerecordid>2322881745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-315cdab9ab2322bd7835235f9e0defc9becd8435e166151c13f3e883403359653</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4Cnlvz0bQpnmTxCxb2oueQJlNN2bbrJBX8721dz8LAwPB-bx6PkGvOcs54edvle2tzwXids3mEOCErriuZca3KU7JiTBSZrGp1Ti5i7BhjRcXEimx3A00fQCG8wxATTi5NCHRsaTxYjEB7mzA4iBRhbxN4msZf4IChBzpMfQO4HEaE_pKctXYf4epvr8nb48Pr5jnb7p5eNvfbzMlSp0xy5bxtatsIKUTjKy2VkKqtgXloXd2A87qQCnhZcsUdl60ErWXBpFR1qeSa3Bx9Dzh-ThCT6cYJh_mlWRy15lWxqPhR5XCMEaE1S2aL34Yzs5RmOjOXZpbSDJtHiJm5OzIwx_8KgCa6AIMDHxBcMn4M_9A_-RV0Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322881745</pqid></control><display><type>article</type><title>On the eigenstructure of sparse matrices related to the prime number theorem</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kline, Jeffery</creator><creatorcontrib>Kline, Jeffery</creatorcontrib><description>The sparse (0,1) matrix that was introduced by Redheffer has the property that its nth leading principal minor equals ∑i≤nμ(i), where μ is the Möbius function. Recently, a substantially sparser (0,1) matrix that possesses the same property has been described. Let Rn denote the nth leading principal submatrix of this sparser matrix. Our main result establishes asymptotically tight estimates for the two dominant eigenvalues of Rn. We also state explicit formulae for the eigenvectors of Rn that are associated with the eigenvalues that are different from 1. Finally, we state several conjectures about the eigenstructure of a related class of matrix.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.09.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Dirichlet convolution ; Eigenvalues ; Eigenvectors ; Linear algebra ; Mertens function ; Number theory ; Prime number theorem ; Redheffer matrix ; Sparse matrices ; Sparse matrix</subject><ispartof>Linear algebra and its applications, 2020-01, Vol.584, p.409-430</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-315cdab9ab2322bd7835235f9e0defc9becd8435e166151c13f3e883403359653</citedby><cites>FETCH-LOGICAL-c368t-315cdab9ab2322bd7835235f9e0defc9becd8435e166151c13f3e883403359653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379519304057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Kline, Jeffery</creatorcontrib><title>On the eigenstructure of sparse matrices related to the prime number theorem</title><title>Linear algebra and its applications</title><description>The sparse (0,1) matrix that was introduced by Redheffer has the property that its nth leading principal minor equals ∑i≤nμ(i), where μ is the Möbius function. Recently, a substantially sparser (0,1) matrix that possesses the same property has been described. Let Rn denote the nth leading principal submatrix of this sparser matrix. Our main result establishes asymptotically tight estimates for the two dominant eigenvalues of Rn. We also state explicit formulae for the eigenvectors of Rn that are associated with the eigenvalues that are different from 1. Finally, we state several conjectures about the eigenstructure of a related class of matrix.</description><subject>Dirichlet convolution</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Linear algebra</subject><subject>Mertens function</subject><subject>Number theory</subject><subject>Prime number theorem</subject><subject>Redheffer matrix</subject><subject>Sparse matrices</subject><subject>Sparse matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4Cnlvz0bQpnmTxCxb2oueQJlNN2bbrJBX8721dz8LAwPB-bx6PkGvOcs54edvle2tzwXids3mEOCErriuZca3KU7JiTBSZrGp1Ti5i7BhjRcXEimx3A00fQCG8wxATTi5NCHRsaTxYjEB7mzA4iBRhbxN4msZf4IChBzpMfQO4HEaE_pKctXYf4epvr8nb48Pr5jnb7p5eNvfbzMlSp0xy5bxtatsIKUTjKy2VkKqtgXloXd2A87qQCnhZcsUdl60ErWXBpFR1qeSa3Bx9Dzh-ThCT6cYJh_mlWRy15lWxqPhR5XCMEaE1S2aL34Yzs5RmOjOXZpbSDJtHiJm5OzIwx_8KgCa6AIMDHxBcMn4M_9A_-RV0Dg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Kline, Jeffery</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>On the eigenstructure of sparse matrices related to the prime number theorem</title><author>Kline, Jeffery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-315cdab9ab2322bd7835235f9e0defc9becd8435e166151c13f3e883403359653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dirichlet convolution</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Linear algebra</topic><topic>Mertens function</topic><topic>Number theory</topic><topic>Prime number theorem</topic><topic>Redheffer matrix</topic><topic>Sparse matrices</topic><topic>Sparse matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kline, Jeffery</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kline, Jeffery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the eigenstructure of sparse matrices related to the prime number theorem</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>584</volume><spage>409</spage><epage>430</epage><pages>409-430</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The sparse (0,1) matrix that was introduced by Redheffer has the property that its nth leading principal minor equals ∑i≤nμ(i), where μ is the Möbius function. Recently, a substantially sparser (0,1) matrix that possesses the same property has been described. Let Rn denote the nth leading principal submatrix of this sparser matrix. Our main result establishes asymptotically tight estimates for the two dominant eigenvalues of Rn. We also state explicit formulae for the eigenvectors of Rn that are associated with the eigenvalues that are different from 1. Finally, we state several conjectures about the eigenstructure of a related class of matrix.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.09.022</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-01, Vol.584, p.409-430
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2322881745
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Dirichlet convolution
Eigenvalues
Eigenvectors
Linear algebra
Mertens function
Number theory
Prime number theorem
Redheffer matrix
Sparse matrices
Sparse matrix
title On the eigenstructure of sparse matrices related to the prime number theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20eigenstructure%20of%20sparse%20matrices%20related%20to%20the%20prime%20number%20theorem&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Kline,%20Jeffery&rft.date=2020-01-01&rft.volume=584&rft.spage=409&rft.epage=430&rft.pages=409-430&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.09.022&rft_dat=%3Cproquest_cross%3E2322881745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322881745&rft_id=info:pmid/&rft_els_id=S0024379519304057&rfr_iscdi=true