Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality

A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2019-12, Vol.55 (6), p.2759-2773
Hauptverfasser: Uney, Murat, Houssineau, Jeremie, Delande, Emmanuel, Julier, Simon J., Clark, Daniel E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2773
container_issue 6
container_start_page 2759
container_title IEEE transactions on aerospace and electronic systems
container_volume 55
creator Uney, Murat
Houssineau, Jeremie
Delande, Emmanuel
Julier, Simon J.
Clark, Daniel E.
description A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.
doi_str_mv 10.1109/TAES.2019.2893083
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2322746853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8613927</ieee_id><sourcerecordid>2322746853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPgS8MmHzny2iW-j7kMYONh8DmmbYkZtZpIq--9t6fDpcu753cPlAHCP0QxjJJ_388VuRhCWMyIkRYJegAnmPEtkiuglmCCERSIJx9fgJoRDL5lgdAK2yy5Y10JXw6VtbTTJzkT4akP0tuhib4UXuHW2jb82GJj3uvdMW56gbiu4alyhG5hrX9lWNzaebsFVrZtg7s5zCj6Wi32-Tjbvq7d8vklKmqGYEFZRkVGTaV0xTVBd15whXokSp6wqJKYUa5FpUjOBZFXiglNiSoJkylBZUDoFT2Pup27U0dsv7U_KaavW840adoggQrhIf3DPPo7s0bvvzoSoDq7z_b9BEUpIxlLBh0Q8UqV3IXhT_8dipIaS1VCyGkpW55L7m4fxxhpj_nmRYipJRv8AnSd24A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322746853</pqid></control><display><type>article</type><title>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</title><source>IEEE Electronic Library (IEL)</source><creator>Uney, Murat ; Houssineau, Jeremie ; Delande, Emmanuel ; Julier, Simon J. ; Clark, Daniel E.</creator><creatorcontrib>Uney, Murat ; Houssineau, Jeremie ; Delande, Emmanuel ; Julier, Simon J. ; Clark, Daniel E.</creatorcontrib><description>A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2019.2893083</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer Science ; Consistency ; Covariance ; Covariance intersection (CI) ; exponential mixture density (EMD) ; Licenses ; Message passing ; Multisensor fusion ; Probability density function ; random finite sets (RFS) ; Sensors ; Signal and Image Processing ; Signal processing algorithms ; target tracking ; Uncertainty</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2019-12, Vol.55 (6), p.2759-2773</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</citedby><cites>FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</cites><orcidid>0000-0003-4380-137X ; 0000-0001-6561-0406 ; 0000-0002-0218-7994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8613927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8613927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02022586$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Uney, Murat</creatorcontrib><creatorcontrib>Houssineau, Jeremie</creatorcontrib><creatorcontrib>Delande, Emmanuel</creatorcontrib><creatorcontrib>Julier, Simon J.</creatorcontrib><creatorcontrib>Clark, Daniel E.</creatorcontrib><title>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Covariance</subject><subject>Covariance intersection (CI)</subject><subject>exponential mixture density (EMD)</subject><subject>Licenses</subject><subject>Message passing</subject><subject>Multisensor fusion</subject><subject>Probability density function</subject><subject>random finite sets (RFS)</subject><subject>Sensors</subject><subject>Signal and Image Processing</subject><subject>Signal processing algorithms</subject><subject>target tracking</subject><subject>Uncertainty</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPgS8MmHzny2iW-j7kMYONh8DmmbYkZtZpIq--9t6fDpcu753cPlAHCP0QxjJJ_388VuRhCWMyIkRYJegAnmPEtkiuglmCCERSIJx9fgJoRDL5lgdAK2yy5Y10JXw6VtbTTJzkT4akP0tuhib4UXuHW2jb82GJj3uvdMW56gbiu4alyhG5hrX9lWNzaebsFVrZtg7s5zCj6Wi32-Tjbvq7d8vklKmqGYEFZRkVGTaV0xTVBd15whXokSp6wqJKYUa5FpUjOBZFXiglNiSoJkylBZUDoFT2Pup27U0dsv7U_KaavW840adoggQrhIf3DPPo7s0bvvzoSoDq7z_b9BEUpIxlLBh0Q8UqV3IXhT_8dipIaS1VCyGkpW55L7m4fxxhpj_nmRYipJRv8AnSd24A</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Uney, Murat</creator><creator>Houssineau, Jeremie</creator><creator>Delande, Emmanuel</creator><creator>Julier, Simon J.</creator><creator>Clark, Daniel E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4380-137X</orcidid><orcidid>https://orcid.org/0000-0001-6561-0406</orcidid><orcidid>https://orcid.org/0000-0002-0218-7994</orcidid></search><sort><creationdate>20191201</creationdate><title>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</title><author>Uney, Murat ; Houssineau, Jeremie ; Delande, Emmanuel ; Julier, Simon J. ; Clark, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Covariance</topic><topic>Covariance intersection (CI)</topic><topic>exponential mixture density (EMD)</topic><topic>Licenses</topic><topic>Message passing</topic><topic>Multisensor fusion</topic><topic>Probability density function</topic><topic>random finite sets (RFS)</topic><topic>Sensors</topic><topic>Signal and Image Processing</topic><topic>Signal processing algorithms</topic><topic>target tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uney, Murat</creatorcontrib><creatorcontrib>Houssineau, Jeremie</creatorcontrib><creatorcontrib>Delande, Emmanuel</creatorcontrib><creatorcontrib>Julier, Simon J.</creatorcontrib><creatorcontrib>Clark, Daniel E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uney, Murat</au><au>Houssineau, Jeremie</au><au>Delande, Emmanuel</au><au>Julier, Simon J.</au><au>Clark, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>55</volume><issue>6</issue><spage>2759</spage><epage>2773</epage><pages>2759-2773</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2019.2893083</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4380-137X</orcidid><orcidid>https://orcid.org/0000-0001-6561-0406</orcidid><orcidid>https://orcid.org/0000-0002-0218-7994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2019-12, Vol.55 (6), p.2759-2773
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_journals_2322746853
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer Science
Consistency
Covariance
Covariance intersection (CI)
exponential mixture density (EMD)
Licenses
Message passing
Multisensor fusion
Probability density function
random finite sets (RFS)
Sensors
Signal and Image Processing
Signal processing algorithms
target tracking
Uncertainty
title Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Finite-Set%20Distributions:%20Pointwise%20Consistency%20and%20Global%20Cardinality&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Uney,%20Murat&rft.date=2019-12-01&rft.volume=55&rft.issue=6&rft.spage=2759&rft.epage=2773&rft.pages=2759-2773&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2019.2893083&rft_dat=%3Cproquest_RIE%3E2322746853%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322746853&rft_id=info:pmid/&rft_ieee_id=8613927&rfr_iscdi=true