Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality
A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2019-12, Vol.55 (6), p.2759-2773 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2773 |
---|---|
container_issue | 6 |
container_start_page | 2759 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 55 |
creator | Uney, Murat Houssineau, Jeremie Delande, Emmanuel Julier, Simon J. Clark, Daniel E. |
description | A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion. |
doi_str_mv | 10.1109/TAES.2019.2893083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2322746853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8613927</ieee_id><sourcerecordid>2322746853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPgS8MmHzny2iW-j7kMYONh8DmmbYkZtZpIq--9t6fDpcu753cPlAHCP0QxjJJ_388VuRhCWMyIkRYJegAnmPEtkiuglmCCERSIJx9fgJoRDL5lgdAK2yy5Y10JXw6VtbTTJzkT4akP0tuhib4UXuHW2jb82GJj3uvdMW56gbiu4alyhG5hrX9lWNzaebsFVrZtg7s5zCj6Wi32-Tjbvq7d8vklKmqGYEFZRkVGTaV0xTVBd15whXokSp6wqJKYUa5FpUjOBZFXiglNiSoJkylBZUDoFT2Pup27U0dsv7U_KaavW840adoggQrhIf3DPPo7s0bvvzoSoDq7z_b9BEUpIxlLBh0Q8UqV3IXhT_8dipIaS1VCyGkpW55L7m4fxxhpj_nmRYipJRv8AnSd24A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322746853</pqid></control><display><type>article</type><title>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</title><source>IEEE Electronic Library (IEL)</source><creator>Uney, Murat ; Houssineau, Jeremie ; Delande, Emmanuel ; Julier, Simon J. ; Clark, Daniel E.</creator><creatorcontrib>Uney, Murat ; Houssineau, Jeremie ; Delande, Emmanuel ; Julier, Simon J. ; Clark, Daniel E.</creatorcontrib><description>A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2019.2893083</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer Science ; Consistency ; Covariance ; Covariance intersection (CI) ; exponential mixture density (EMD) ; Licenses ; Message passing ; Multisensor fusion ; Probability density function ; random finite sets (RFS) ; Sensors ; Signal and Image Processing ; Signal processing algorithms ; target tracking ; Uncertainty</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2019-12, Vol.55 (6), p.2759-2773</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</citedby><cites>FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</cites><orcidid>0000-0003-4380-137X ; 0000-0001-6561-0406 ; 0000-0002-0218-7994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8613927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8613927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02022586$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Uney, Murat</creatorcontrib><creatorcontrib>Houssineau, Jeremie</creatorcontrib><creatorcontrib>Delande, Emmanuel</creatorcontrib><creatorcontrib>Julier, Simon J.</creatorcontrib><creatorcontrib>Clark, Daniel E.</creatorcontrib><title>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Covariance</subject><subject>Covariance intersection (CI)</subject><subject>exponential mixture density (EMD)</subject><subject>Licenses</subject><subject>Message passing</subject><subject>Multisensor fusion</subject><subject>Probability density function</subject><subject>random finite sets (RFS)</subject><subject>Sensors</subject><subject>Signal and Image Processing</subject><subject>Signal processing algorithms</subject><subject>target tracking</subject><subject>Uncertainty</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPgS8MmHzny2iW-j7kMYONh8DmmbYkZtZpIq--9t6fDpcu753cPlAHCP0QxjJJ_388VuRhCWMyIkRYJegAnmPEtkiuglmCCERSIJx9fgJoRDL5lgdAK2yy5Y10JXw6VtbTTJzkT4akP0tuhib4UXuHW2jb82GJj3uvdMW56gbiu4alyhG5hrX9lWNzaebsFVrZtg7s5zCj6Wi32-Tjbvq7d8vklKmqGYEFZRkVGTaV0xTVBd15whXokSp6wqJKYUa5FpUjOBZFXiglNiSoJkylBZUDoFT2Pup27U0dsv7U_KaavW840adoggQrhIf3DPPo7s0bvvzoSoDq7z_b9BEUpIxlLBh0Q8UqV3IXhT_8dipIaS1VCyGkpW55L7m4fxxhpj_nmRYipJRv8AnSd24A</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Uney, Murat</creator><creator>Houssineau, Jeremie</creator><creator>Delande, Emmanuel</creator><creator>Julier, Simon J.</creator><creator>Clark, Daniel E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4380-137X</orcidid><orcidid>https://orcid.org/0000-0001-6561-0406</orcidid><orcidid>https://orcid.org/0000-0002-0218-7994</orcidid></search><sort><creationdate>20191201</creationdate><title>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</title><author>Uney, Murat ; Houssineau, Jeremie ; Delande, Emmanuel ; Julier, Simon J. ; Clark, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-24d3873e7aad4a20fff5405d8c164db91331a87a2f4809dc1b532ec209640cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Covariance</topic><topic>Covariance intersection (CI)</topic><topic>exponential mixture density (EMD)</topic><topic>Licenses</topic><topic>Message passing</topic><topic>Multisensor fusion</topic><topic>Probability density function</topic><topic>random finite sets (RFS)</topic><topic>Sensors</topic><topic>Signal and Image Processing</topic><topic>Signal processing algorithms</topic><topic>target tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uney, Murat</creatorcontrib><creatorcontrib>Houssineau, Jeremie</creatorcontrib><creatorcontrib>Delande, Emmanuel</creatorcontrib><creatorcontrib>Julier, Simon J.</creatorcontrib><creatorcontrib>Clark, Daniel E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uney, Murat</au><au>Houssineau, Jeremie</au><au>Delande, Emmanuel</au><au>Julier, Simon J.</au><au>Clark, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>55</volume><issue>6</issue><spage>2759</spage><epage>2773</epage><pages>2759-2773</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>A recent trend in distributed multisensor fusion is to use random finite-set filters at the sensor nodes and fuse the filtered distributions algorithmically using their exponential mixture densities (EMDs). Fusion algorithms that extend covariance intersection and consensus-based approaches are such examples. In this paper, we analyze the variational principle underlying EMDs and show that the EMDs of finite-set distributions do not necessarily lead to consistent fusion of cardinality distributions. Indeed, we demonstrate that these inconsistencies may occur with overwhelming probability in practice, through examples with Bernoulli, Poisson, and independent identically distributed cluster processes. We prove that pointwise consistency of EMDs does not imply consistency in global cardinality and vice versa. Then, we redefine the variational problems underlying fusion and provide iterative solutions thereby establishing a framework that guarantees cardinality consistent fusion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2019.2893083</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4380-137X</orcidid><orcidid>https://orcid.org/0000-0001-6561-0406</orcidid><orcidid>https://orcid.org/0000-0002-0218-7994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2019-12, Vol.55 (6), p.2759-2773 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_2322746853 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computer Science Consistency Covariance Covariance intersection (CI) exponential mixture density (EMD) Licenses Message passing Multisensor fusion Probability density function random finite sets (RFS) Sensors Signal and Image Processing Signal processing algorithms target tracking Uncertainty |
title | Fusion of Finite-Set Distributions: Pointwise Consistency and Global Cardinality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Finite-Set%20Distributions:%20Pointwise%20Consistency%20and%20Global%20Cardinality&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Uney,%20Murat&rft.date=2019-12-01&rft.volume=55&rft.issue=6&rft.spage=2759&rft.epage=2773&rft.pages=2759-2773&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2019.2893083&rft_dat=%3Cproquest_RIE%3E2322746853%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322746853&rft_id=info:pmid/&rft_ieee_id=8613927&rfr_iscdi=true |