Fouling mitigation in crossflow filtration using chaotic advection: A numerical study
Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, th...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2020-01, Vol.66 (1), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIChE journal |
container_volume | 66 |
creator | Jung, Seon Yeop Jung, Hae In Kang, Tae Gon Ahn, Kyung Hyun |
description | Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling. |
doi_str_mv | 10.1002/aic.16792 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322598972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322598972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw4B9Y4sQhrbNOYodbVfGoVIkLnC3Hj-IqjYudUPXf4zZcOa1m9O2OdhC6z8ksJwTm0qlZXrEaLtAkLwuWlTUpL9GEEJJnyciv0U2M26SAcZigzxc_tK7b4J3r3Ub2znfYdVgFH6Nt_QFb1_Zh9Id4AtWX9L1TWOofo07-E17gbtiZ4JRscewHfbxFV1a20dz9zWnKef5YvmXr99fVcrHOFKUFZLypCpAGLCuA0kqRCgpdckKVbgyXmnKioLBWMQ2ENY2RnOqGFVYmqVVJp-hhvLsP_nswsRdbP4QuRQqgAGXNawaJehyp81fBWLEPbifDUeREnFoTqTVxbi2x85E9uNYc_wfFYrUcN34BleRvCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322598972</pqid></control><display><type>article</type><title>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</title><source>Access via Wiley Online Library</source><creator>Jung, Seon Yeop ; Jung, Hae In ; Kang, Tae Gon ; Ahn, Kyung Hyun</creator><creatorcontrib>Jung, Seon Yeop ; Jung, Hae In ; Kang, Tae Gon ; Ahn, Kyung Hyun</creatorcontrib><description>Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16792</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Advection ; Boundary layer thickness ; Boundary layers ; Chaos theory ; chaotic advection ; Configurations ; Cross flow ; crossflow filtration ; Design parameters ; Embedded systems ; Filtration ; Flow system ; Fouling ; Laminar flow ; Laminar mixing ; Mitigation ; numerical simulation ; Reduction ; static mixer</subject><ispartof>AIChE journal, 2020-01, Vol.66 (1), p.n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</citedby><cites>FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</cites><orcidid>0000-0002-7787-1918 ; 0000-0001-7266-1084 ; 0000-0002-4657-948X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.16792$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.16792$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jung, Seon Yeop</creatorcontrib><creatorcontrib>Jung, Hae In</creatorcontrib><creatorcontrib>Kang, Tae Gon</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><title>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</title><title>AIChE journal</title><description>Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.</description><subject>Advection</subject><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>Chaos theory</subject><subject>chaotic advection</subject><subject>Configurations</subject><subject>Cross flow</subject><subject>crossflow filtration</subject><subject>Design parameters</subject><subject>Embedded systems</subject><subject>Filtration</subject><subject>Flow system</subject><subject>Fouling</subject><subject>Laminar flow</subject><subject>Laminar mixing</subject><subject>Mitigation</subject><subject>numerical simulation</subject><subject>Reduction</subject><subject>static mixer</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw4B9Y4sQhrbNOYodbVfGoVIkLnC3Hj-IqjYudUPXf4zZcOa1m9O2OdhC6z8ksJwTm0qlZXrEaLtAkLwuWlTUpL9GEEJJnyciv0U2M26SAcZigzxc_tK7b4J3r3Ub2znfYdVgFH6Nt_QFb1_Zh9Id4AtWX9L1TWOofo07-E17gbtiZ4JRscewHfbxFV1a20dz9zWnKef5YvmXr99fVcrHOFKUFZLypCpAGLCuA0kqRCgpdckKVbgyXmnKioLBWMQ2ENY2RnOqGFVYmqVVJp-hhvLsP_nswsRdbP4QuRQqgAGXNawaJehyp81fBWLEPbifDUeREnFoTqTVxbi2x85E9uNYc_wfFYrUcN34BleRvCg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Jung, Seon Yeop</creator><creator>Jung, Hae In</creator><creator>Kang, Tae Gon</creator><creator>Ahn, Kyung Hyun</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7787-1918</orcidid><orcidid>https://orcid.org/0000-0001-7266-1084</orcidid><orcidid>https://orcid.org/0000-0002-4657-948X</orcidid></search><sort><creationdate>202001</creationdate><title>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</title><author>Jung, Seon Yeop ; Jung, Hae In ; Kang, Tae Gon ; Ahn, Kyung Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>Chaos theory</topic><topic>chaotic advection</topic><topic>Configurations</topic><topic>Cross flow</topic><topic>crossflow filtration</topic><topic>Design parameters</topic><topic>Embedded systems</topic><topic>Filtration</topic><topic>Flow system</topic><topic>Fouling</topic><topic>Laminar flow</topic><topic>Laminar mixing</topic><topic>Mitigation</topic><topic>numerical simulation</topic><topic>Reduction</topic><topic>static mixer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Seon Yeop</creatorcontrib><creatorcontrib>Jung, Hae In</creatorcontrib><creatorcontrib>Kang, Tae Gon</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Seon Yeop</au><au>Jung, Hae In</au><au>Kang, Tae Gon</au><au>Ahn, Kyung Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</atitle><jtitle>AIChE journal</jtitle><date>2020-01</date><risdate>2020</risdate><volume>66</volume><issue>1</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.16792</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7787-1918</orcidid><orcidid>https://orcid.org/0000-0001-7266-1084</orcidid><orcidid>https://orcid.org/0000-0002-4657-948X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2020-01, Vol.66 (1), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2322598972 |
source | Access via Wiley Online Library |
subjects | Advection Boundary layer thickness Boundary layers Chaos theory chaotic advection Configurations Cross flow crossflow filtration Design parameters Embedded systems Filtration Flow system Fouling Laminar flow Laminar mixing Mitigation numerical simulation Reduction static mixer |
title | Fouling mitigation in crossflow filtration using chaotic advection: A numerical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fouling%20mitigation%20in%20crossflow%20filtration%20using%20chaotic%20advection:%20A%20numerical%20study&rft.jtitle=AIChE%20journal&rft.au=Jung,%20Seon%20Yeop&rft.date=2020-01&rft.volume=66&rft.issue=1&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16792&rft_dat=%3Cproquest_cross%3E2322598972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322598972&rft_id=info:pmid/&rfr_iscdi=true |