Fouling mitigation in crossflow filtration using chaotic advection: A numerical study

Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2020-01, Vol.66 (1), p.n/a
Hauptverfasser: Jung, Seon Yeop, Jung, Hae In, Kang, Tae Gon, Ahn, Kyung Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title AIChE journal
container_volume 66
creator Jung, Seon Yeop
Jung, Hae In
Kang, Tae Gon
Ahn, Kyung Hyun
description Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.
doi_str_mv 10.1002/aic.16792
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322598972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322598972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw4B9Y4sQhrbNOYodbVfGoVIkLnC3Hj-IqjYudUPXf4zZcOa1m9O2OdhC6z8ksJwTm0qlZXrEaLtAkLwuWlTUpL9GEEJJnyciv0U2M26SAcZigzxc_tK7b4J3r3Ub2znfYdVgFH6Nt_QFb1_Zh9Id4AtWX9L1TWOofo07-E17gbtiZ4JRscewHfbxFV1a20dz9zWnKef5YvmXr99fVcrHOFKUFZLypCpAGLCuA0kqRCgpdckKVbgyXmnKioLBWMQ2ENY2RnOqGFVYmqVVJp-hhvLsP_nswsRdbP4QuRQqgAGXNawaJehyp81fBWLEPbifDUeREnFoTqTVxbi2x85E9uNYc_wfFYrUcN34BleRvCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322598972</pqid></control><display><type>article</type><title>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</title><source>Access via Wiley Online Library</source><creator>Jung, Seon Yeop ; Jung, Hae In ; Kang, Tae Gon ; Ahn, Kyung Hyun</creator><creatorcontrib>Jung, Seon Yeop ; Jung, Hae In ; Kang, Tae Gon ; Ahn, Kyung Hyun</creatorcontrib><description>Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16792</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Advection ; Boundary layer thickness ; Boundary layers ; Chaos theory ; chaotic advection ; Configurations ; Cross flow ; crossflow filtration ; Design parameters ; Embedded systems ; Filtration ; Flow system ; Fouling ; Laminar flow ; Laminar mixing ; Mitigation ; numerical simulation ; Reduction ; static mixer</subject><ispartof>AIChE journal, 2020-01, Vol.66 (1), p.n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</citedby><cites>FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</cites><orcidid>0000-0002-7787-1918 ; 0000-0001-7266-1084 ; 0000-0002-4657-948X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.16792$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.16792$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jung, Seon Yeop</creatorcontrib><creatorcontrib>Jung, Hae In</creatorcontrib><creatorcontrib>Kang, Tae Gon</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><title>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</title><title>AIChE journal</title><description>Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.</description><subject>Advection</subject><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>Chaos theory</subject><subject>chaotic advection</subject><subject>Configurations</subject><subject>Cross flow</subject><subject>crossflow filtration</subject><subject>Design parameters</subject><subject>Embedded systems</subject><subject>Filtration</subject><subject>Flow system</subject><subject>Fouling</subject><subject>Laminar flow</subject><subject>Laminar mixing</subject><subject>Mitigation</subject><subject>numerical simulation</subject><subject>Reduction</subject><subject>static mixer</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw4B9Y4sQhrbNOYodbVfGoVIkLnC3Hj-IqjYudUPXf4zZcOa1m9O2OdhC6z8ksJwTm0qlZXrEaLtAkLwuWlTUpL9GEEJJnyciv0U2M26SAcZigzxc_tK7b4J3r3Ub2znfYdVgFH6Nt_QFb1_Zh9Id4AtWX9L1TWOofo07-E17gbtiZ4JRscewHfbxFV1a20dz9zWnKef5YvmXr99fVcrHOFKUFZLypCpAGLCuA0kqRCgpdckKVbgyXmnKioLBWMQ2ENY2RnOqGFVYmqVVJp-hhvLsP_nswsRdbP4QuRQqgAGXNawaJehyp81fBWLEPbifDUeREnFoTqTVxbi2x85E9uNYc_wfFYrUcN34BleRvCg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Jung, Seon Yeop</creator><creator>Jung, Hae In</creator><creator>Kang, Tae Gon</creator><creator>Ahn, Kyung Hyun</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7787-1918</orcidid><orcidid>https://orcid.org/0000-0001-7266-1084</orcidid><orcidid>https://orcid.org/0000-0002-4657-948X</orcidid></search><sort><creationdate>202001</creationdate><title>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</title><author>Jung, Seon Yeop ; Jung, Hae In ; Kang, Tae Gon ; Ahn, Kyung Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3342-8b642ae2f742336c0624d5803cdbe8ad380c24ffc7d207bbea83db74fa207dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>Chaos theory</topic><topic>chaotic advection</topic><topic>Configurations</topic><topic>Cross flow</topic><topic>crossflow filtration</topic><topic>Design parameters</topic><topic>Embedded systems</topic><topic>Filtration</topic><topic>Flow system</topic><topic>Fouling</topic><topic>Laminar flow</topic><topic>Laminar mixing</topic><topic>Mitigation</topic><topic>numerical simulation</topic><topic>Reduction</topic><topic>static mixer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Seon Yeop</creatorcontrib><creatorcontrib>Jung, Hae In</creatorcontrib><creatorcontrib>Kang, Tae Gon</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Seon Yeop</au><au>Jung, Hae In</au><au>Kang, Tae Gon</au><au>Ahn, Kyung Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fouling mitigation in crossflow filtration using chaotic advection: A numerical study</atitle><jtitle>AIChE journal</jtitle><date>2020-01</date><risdate>2020</risdate><volume>66</volume><issue>1</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier‐embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness (δ¯B/R) and the surface‐averaged dimensionless wall concentration (c¯w) dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. δ¯B/R and c¯w decrease as β increases, and the largest reduction of c¯w is observed in the counter‐rotational protocol. A semi‐ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.16792</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7787-1918</orcidid><orcidid>https://orcid.org/0000-0001-7266-1084</orcidid><orcidid>https://orcid.org/0000-0002-4657-948X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2020-01, Vol.66 (1), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2322598972
source Access via Wiley Online Library
subjects Advection
Boundary layer thickness
Boundary layers
Chaos theory
chaotic advection
Configurations
Cross flow
crossflow filtration
Design parameters
Embedded systems
Filtration
Flow system
Fouling
Laminar flow
Laminar mixing
Mitigation
numerical simulation
Reduction
static mixer
title Fouling mitigation in crossflow filtration using chaotic advection: A numerical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fouling%20mitigation%20in%20crossflow%20filtration%20using%20chaotic%20advection:%20A%20numerical%20study&rft.jtitle=AIChE%20journal&rft.au=Jung,%20Seon%20Yeop&rft.date=2020-01&rft.volume=66&rft.issue=1&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16792&rft_dat=%3Cproquest_cross%3E2322598972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322598972&rft_id=info:pmid/&rfr_iscdi=true