Dyson’s “Favorite” Identity and Chebyshev Polynomials of the Third and Fourth Kind

The combinatorial and analytic properties of Dyson’s “favorite” identity are studied in detail. In particular, a q -series analog of the anti-telescoping method is used to provide a new proof of Dyson’s results with mock theta functions popping up in intermediate steps. This leads to the appearance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2019-11, Vol.23 (3-4), p.443-464
1. Verfasser: Andrews, George E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 3-4
container_start_page 443
container_title Annals of combinatorics
container_volume 23
creator Andrews, George E.
description The combinatorial and analytic properties of Dyson’s “favorite” identity are studied in detail. In particular, a q -series analog of the anti-telescoping method is used to provide a new proof of Dyson’s results with mock theta functions popping up in intermediate steps. This leads to the appearance of Chebyshev polynomials of the third and fourth kind in Bailey pairs related to Bailey’s Lemma. The natural relationship with L.J. Rogers’s pioneering work is also presented.
doi_str_mv 10.1007/s00026-019-00443-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322382761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322382761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e31147b049fac4dfa792c848e682b3d58db4cc9b1b7847ecac068820299c68d53</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngeXXyp7vJUarVYkEPFbyF3STrbmk3Ndla9tbXEPTl-iTGVvDmab5hft_M8CF0TuCSAGRXAQBomgCRCQDnLFkfoB7Q2DKQ_HCnRRxBeoxOQphFlQGjPfRy0wXXbDcfAW83n6P83fm6tdvNFx4b27R12-G8MXhY2aILlX3HT27eNW5R5_OAXYnbyuJpVXuzw0Zu5dsKP9SNOUVHZWTs2W_to-fR7XR4n0we78bD60miGZFtYhkhPCuAyzLX3JR5JqkWXNhU0IKZgTAF11oWpMgEz6zONaRCUKBS6lSYAeuji_3epXdvKxtaNYtPNPGkooxSJmiWkkjRPaW9C8HbUi19vch9pwionwTVPkEVE1S7BNU6mtjeFCLcvFr_t_of1zd09Xai</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322382761</pqid></control><display><type>article</type><title>Dyson’s “Favorite” Identity and Chebyshev Polynomials of the Third and Fourth Kind</title><source>SpringerLink (Online service)</source><creator>Andrews, George E.</creator><creatorcontrib>Andrews, George E.</creatorcontrib><description>The combinatorial and analytic properties of Dyson’s “favorite” identity are studied in detail. In particular, a q -series analog of the anti-telescoping method is used to provide a new proof of Dyson’s results with mock theta functions popping up in intermediate steps. This leads to the appearance of Chebyshev polynomials of the third and fourth kind in Bailey pairs related to Bailey’s Lemma. The natural relationship with L.J. Rogers’s pioneering work is also presented.</description><identifier>ISSN: 0218-0006</identifier><identifier>EISSN: 0219-3094</identifier><identifier>DOI: 10.1007/s00026-019-00443-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chebyshev approximation ; Combinatorial analysis ; Combinatorics ; Ice ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials ; Telescoping</subject><ispartof>Annals of combinatorics, 2019-11, Vol.23 (3-4), p.443-464</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e31147b049fac4dfa792c848e682b3d58db4cc9b1b7847ecac068820299c68d53</citedby><cites>FETCH-LOGICAL-c319t-e31147b049fac4dfa792c848e682b3d58db4cc9b1b7847ecac068820299c68d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00026-019-00443-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00026-019-00443-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andrews, George E.</creatorcontrib><title>Dyson’s “Favorite” Identity and Chebyshev Polynomials of the Third and Fourth Kind</title><title>Annals of combinatorics</title><addtitle>Ann. Comb</addtitle><description>The combinatorial and analytic properties of Dyson’s “favorite” identity are studied in detail. In particular, a q -series analog of the anti-telescoping method is used to provide a new proof of Dyson’s results with mock theta functions popping up in intermediate steps. This leads to the appearance of Chebyshev polynomials of the third and fourth kind in Bailey pairs related to Bailey’s Lemma. The natural relationship with L.J. Rogers’s pioneering work is also presented.</description><subject>Chebyshev approximation</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Ice</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Telescoping</subject><issn>0218-0006</issn><issn>0219-3094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4CngeXXyp7vJUarVYkEPFbyF3STrbmk3Ndla9tbXEPTl-iTGVvDmab5hft_M8CF0TuCSAGRXAQBomgCRCQDnLFkfoB7Q2DKQ_HCnRRxBeoxOQphFlQGjPfRy0wXXbDcfAW83n6P83fm6tdvNFx4b27R12-G8MXhY2aILlX3HT27eNW5R5_OAXYnbyuJpVXuzw0Zu5dsKP9SNOUVHZWTs2W_to-fR7XR4n0we78bD60miGZFtYhkhPCuAyzLX3JR5JqkWXNhU0IKZgTAF11oWpMgEz6zONaRCUKBS6lSYAeuji_3epXdvKxtaNYtPNPGkooxSJmiWkkjRPaW9C8HbUi19vch9pwionwTVPkEVE1S7BNU6mtjeFCLcvFr_t_of1zd09Xai</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Andrews, George E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Dyson’s “Favorite” Identity and Chebyshev Polynomials of the Third and Fourth Kind</title><author>Andrews, George E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e31147b049fac4dfa792c848e682b3d58db4cc9b1b7847ecac068820299c68d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chebyshev approximation</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Ice</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Telescoping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, George E.</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, George E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dyson’s “Favorite” Identity and Chebyshev Polynomials of the Third and Fourth Kind</atitle><jtitle>Annals of combinatorics</jtitle><stitle>Ann. Comb</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>23</volume><issue>3-4</issue><spage>443</spage><epage>464</epage><pages>443-464</pages><issn>0218-0006</issn><eissn>0219-3094</eissn><abstract>The combinatorial and analytic properties of Dyson’s “favorite” identity are studied in detail. In particular, a q -series analog of the anti-telescoping method is used to provide a new proof of Dyson’s results with mock theta functions popping up in intermediate steps. This leads to the appearance of Chebyshev polynomials of the third and fourth kind in Bailey pairs related to Bailey’s Lemma. The natural relationship with L.J. Rogers’s pioneering work is also presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00026-019-00443-w</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0218-0006
ispartof Annals of combinatorics, 2019-11, Vol.23 (3-4), p.443-464
issn 0218-0006
0219-3094
language eng
recordid cdi_proquest_journals_2322382761
source SpringerLink (Online service)
subjects Chebyshev approximation
Combinatorial analysis
Combinatorics
Ice
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Telescoping
title Dyson’s “Favorite” Identity and Chebyshev Polynomials of the Third and Fourth Kind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dyson%E2%80%99s%20%E2%80%9CFavorite%E2%80%9D%20Identity%20and%20Chebyshev%20Polynomials%20of%20the%20Third%20and%20Fourth%20Kind&rft.jtitle=Annals%20of%20combinatorics&rft.au=Andrews,%20George%20E.&rft.date=2019-11-01&rft.volume=23&rft.issue=3-4&rft.spage=443&rft.epage=464&rft.pages=443-464&rft.issn=0218-0006&rft.eissn=0219-3094&rft_id=info:doi/10.1007/s00026-019-00443-w&rft_dat=%3Cproquest_cross%3E2322382761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322382761&rft_id=info:pmid/&rfr_iscdi=true