Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts
Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na at...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-03, Vol.55 (7), p.2870-2880 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2880 |
---|---|
container_issue | 7 |
container_start_page | 2870 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Van, To Ba Hung, P. K. Vinh, L. T. Ha, N. T. T. San, L. T. Noritake, Fumiya |
description | Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na atoms located in NC depends strongly on the constituent content of NC-forming atoms. The simulation also reveals that Na and O form the chemical bond. The static structure is found to be heterogeneous with separate Na-poor and Na-rich regions formed by different-type NC clusters, the number and size of which vary with SiO
2
content. We also find the sodium deficit around Si and sodium surplus around O. As the status of O changes, Na atoms are redistributed between vicinity spaces of network former (VSNFs). The dynamical structure is heterogeneous with separate regions occupied by an NF cluster of high-sodium-density atoms and a number of NF clusters of low-sodium-density atoms. During hundreds of picoseconds, the sodium atoms are not uniformly distributed throughout VSNFs, but they prefer to move along diffusion pathways. In the SiO
2
-rich model, the diffusion pathways emerge clearly, while in the SiO
2
-poor model, these diffusion pathways disappear. |
doi_str_mv | 10.1007/s10853-019-04232-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2322328227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607808853</galeid><sourcerecordid>A607808853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-9a73875041b63eb42baf308074b2433f0066c3baa32b0794d7203c75db76050d3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuAV4KdJx9tussx_BgMBZ3XIW3Tkdk1M0l1-_dGq8huJIHA4XlykvMidE5gRADEtSeQpywBMk6AU0aT7QEakFSwhOfADtEAgNKE8owcoxPvVwCQCkoGaPGgw4d1r7hU7ybsrrDfqGBUgyvjgzNFF4xtsa2xt5Xp1li1Fa52rVqb0mPT_pa9aUypgsZr3QR_io5q1Xh99nMO0cvtzWJ6n8wf72bTyTwpeZqHZKwEy0UKnBQZ0wWnhaoZ5CB4QTljNUCWlaxQitECxJhXggIrRVoVIoMUKjZEF_29G2ffOu2DXNnOtbGljDOIO6dURGrUU0vVaGna2ganyrgqHX9hW12bWJ9kIHLI4xSjcLknRCbobViqzns5e37aZ2nPls5673QtN86sldtJAvIrGtlHI2M08jsauY0S6yUf4Xap3d-7_7E-AR3akAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322328227</pqid></control><display><type>article</type><title>Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts</title><source>SpringerLink Journals</source><creator>Van, To Ba ; Hung, P. K. ; Vinh, L. T. ; Ha, N. T. T. ; San, L. T. ; Noritake, Fumiya</creator><creatorcontrib>Van, To Ba ; Hung, P. K. ; Vinh, L. T. ; Ha, N. T. T. ; San, L. T. ; Noritake, Fumiya</creatorcontrib><description>Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na atoms located in NC depends strongly on the constituent content of NC-forming atoms. The simulation also reveals that Na and O form the chemical bond. The static structure is found to be heterogeneous with separate Na-poor and Na-rich regions formed by different-type NC clusters, the number and size of which vary with SiO
2
content. We also find the sodium deficit around Si and sodium surplus around O. As the status of O changes, Na atoms are redistributed between vicinity spaces of network former (VSNFs). The dynamical structure is heterogeneous with separate regions occupied by an NF cluster of high-sodium-density atoms and a number of NF clusters of low-sodium-density atoms. During hundreds of picoseconds, the sodium atoms are not uniformly distributed throughout VSNFs, but they prefer to move along diffusion pathways. In the SiO
2
-rich model, the diffusion pathways emerge clearly, while in the SiO
2
-poor model, these diffusion pathways disappear.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-04232-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Atomic properties ; Characterization and Evaluation of Materials ; Chemical bonds ; Chemistry and Materials Science ; Classical Mechanics ; Clusters ; Computation & Theory ; Computer simulation ; Crystallography and Scattering Methods ; Density ; Diffusion ; Dynamic structural analysis ; Materials Science ; Melts ; Molecular dynamics ; Organic chemistry ; Polymer Sciences ; Silicon dioxide ; Sodium ; Sodium silicates ; Solid Mechanics ; Spatial distribution</subject><ispartof>Journal of materials science, 2020-03, Vol.55 (7), p.2870-2880</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-9a73875041b63eb42baf308074b2433f0066c3baa32b0794d7203c75db76050d3</citedby><cites>FETCH-LOGICAL-c458t-9a73875041b63eb42baf308074b2433f0066c3baa32b0794d7203c75db76050d3</cites><orcidid>0000-0002-7945-3883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-04232-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-04232-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Van, To Ba</creatorcontrib><creatorcontrib>Hung, P. K.</creatorcontrib><creatorcontrib>Vinh, L. T.</creatorcontrib><creatorcontrib>Ha, N. T. T.</creatorcontrib><creatorcontrib>San, L. T.</creatorcontrib><creatorcontrib>Noritake, Fumiya</creatorcontrib><title>Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na atoms located in NC depends strongly on the constituent content of NC-forming atoms. The simulation also reveals that Na and O form the chemical bond. The static structure is found to be heterogeneous with separate Na-poor and Na-rich regions formed by different-type NC clusters, the number and size of which vary with SiO
2
content. We also find the sodium deficit around Si and sodium surplus around O. As the status of O changes, Na atoms are redistributed between vicinity spaces of network former (VSNFs). The dynamical structure is heterogeneous with separate regions occupied by an NF cluster of high-sodium-density atoms and a number of NF clusters of low-sodium-density atoms. During hundreds of picoseconds, the sodium atoms are not uniformly distributed throughout VSNFs, but they prefer to move along diffusion pathways. In the SiO
2
-rich model, the diffusion pathways emerge clearly, while in the SiO
2
-poor model, these diffusion pathways disappear.</description><subject>Analysis</subject><subject>Atomic properties</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Clusters</subject><subject>Computation & Theory</subject><subject>Computer simulation</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Diffusion</subject><subject>Dynamic structural analysis</subject><subject>Materials Science</subject><subject>Melts</subject><subject>Molecular dynamics</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Silicon dioxide</subject><subject>Sodium</subject><subject>Sodium silicates</subject><subject>Solid Mechanics</subject><subject>Spatial distribution</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kV1LwzAUhoMoOKd_wKuAV4KdJx9tussx_BgMBZ3XIW3Tkdk1M0l1-_dGq8huJIHA4XlykvMidE5gRADEtSeQpywBMk6AU0aT7QEakFSwhOfADtEAgNKE8owcoxPvVwCQCkoGaPGgw4d1r7hU7ybsrrDfqGBUgyvjgzNFF4xtsa2xt5Xp1li1Fa52rVqb0mPT_pa9aUypgsZr3QR_io5q1Xh99nMO0cvtzWJ6n8wf72bTyTwpeZqHZKwEy0UKnBQZ0wWnhaoZ5CB4QTljNUCWlaxQitECxJhXggIrRVoVIoMUKjZEF_29G2ffOu2DXNnOtbGljDOIO6dURGrUU0vVaGna2ganyrgqHX9hW12bWJ9kIHLI4xSjcLknRCbobViqzns5e37aZ2nPls5673QtN86sldtJAvIrGtlHI2M08jsauY0S6yUf4Xap3d-7_7E-AR3akAM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Van, To Ba</creator><creator>Hung, P. K.</creator><creator>Vinh, L. T.</creator><creator>Ha, N. T. T.</creator><creator>San, L. T.</creator><creator>Noritake, Fumiya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7945-3883</orcidid></search><sort><creationdate>20200301</creationdate><title>Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts</title><author>Van, To Ba ; Hung, P. K. ; Vinh, L. T. ; Ha, N. T. T. ; San, L. T. ; Noritake, Fumiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-9a73875041b63eb42baf308074b2433f0066c3baa32b0794d7203c75db76050d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Atomic properties</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Clusters</topic><topic>Computation & Theory</topic><topic>Computer simulation</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Diffusion</topic><topic>Dynamic structural analysis</topic><topic>Materials Science</topic><topic>Melts</topic><topic>Molecular dynamics</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Silicon dioxide</topic><topic>Sodium</topic><topic>Sodium silicates</topic><topic>Solid Mechanics</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van, To Ba</creatorcontrib><creatorcontrib>Hung, P. K.</creatorcontrib><creatorcontrib>Vinh, L. T.</creatorcontrib><creatorcontrib>Ha, N. T. T.</creatorcontrib><creatorcontrib>San, L. T.</creatorcontrib><creatorcontrib>Noritake, Fumiya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van, To Ba</au><au>Hung, P. K.</au><au>Vinh, L. T.</au><au>Ha, N. T. T.</au><au>San, L. T.</au><au>Noritake, Fumiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>2870</spage><epage>2880</epage><pages>2870-2880</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na atoms located in NC depends strongly on the constituent content of NC-forming atoms. The simulation also reveals that Na and O form the chemical bond. The static structure is found to be heterogeneous with separate Na-poor and Na-rich regions formed by different-type NC clusters, the number and size of which vary with SiO
2
content. We also find the sodium deficit around Si and sodium surplus around O. As the status of O changes, Na atoms are redistributed between vicinity spaces of network former (VSNFs). The dynamical structure is heterogeneous with separate regions occupied by an NF cluster of high-sodium-density atoms and a number of NF clusters of low-sodium-density atoms. During hundreds of picoseconds, the sodium atoms are not uniformly distributed throughout VSNFs, but they prefer to move along diffusion pathways. In the SiO
2
-rich model, the diffusion pathways emerge clearly, while in the SiO
2
-poor model, these diffusion pathways disappear.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-04232-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7945-3883</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-03, Vol.55 (7), p.2870-2880 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2322328227 |
source | SpringerLink Journals |
subjects | Analysis Atomic properties Characterization and Evaluation of Materials Chemical bonds Chemistry and Materials Science Classical Mechanics Clusters Computation & Theory Computer simulation Crystallography and Scattering Methods Density Diffusion Dynamic structural analysis Materials Science Melts Molecular dynamics Organic chemistry Polymer Sciences Silicon dioxide Sodium Sodium silicates Solid Mechanics Spatial distribution |
title | Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20cavity,%20spatial%20distribution%20of%20sodium%20and%20dynamics%20in%20sodium%20silicate%20melts&rft.jtitle=Journal%20of%20materials%20science&rft.au=Van,%20To%20Ba&rft.date=2020-03-01&rft.volume=55&rft.issue=7&rft.spage=2870&rft.epage=2880&rft.pages=2870-2880&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-04232-x&rft_dat=%3Cgale_proqu%3EA607808853%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322328227&rft_id=info:pmid/&rft_galeid=A607808853&rfr_iscdi=true |