The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals

We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-03, Vol.55 (7), p.2661-2681
Hauptverfasser: Naik, Sneha N., Walley, Stephen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2681
container_issue 7
container_start_page 2661
container_title Journal of materials science
container_volume 55
creator Naik, Sneha N.
Walley, Stephen M.
description We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.
doi_str_mv 10.1007/s10853-019-04160-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2322327781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607808838</galeid><sourcerecordid>A607808838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWC8v4GrAlYvRk6SZpMtSvIGgaN0aYuakHWkzNUmt7nwH39AnMTqC6EISOCH5vpwDPyF7FA4pgDyKFJTgJdBBCX1aQblaIz0qJC_7Cvg66QEwVrJ-RTfJVowPACAkoz1yN55icWZms_fXtytMdloYXxeNf8IQ_zwEnJnUtD5-ISl7UxNqjzEWrSu88a0NLzFlpfFYzDGf4g7ZcLng7nfdJrcnx-PRWXlxeXo-Gl6UVgBLpZLG0spwI-6l5CAcU8hsJTl3_QG4GmvDK8ucEhVYwVRd1VyYAVJBBa8549tkv_t3EdrHJcakH9pl8LmlZpzlLaWimTrsqImZoW68a1MwNq8a541tPbom3w8rkAqU4ioLB7-EzCR8ThOzjFGf31z_ZlnH2tDGGNDpRWjmJrxoCvozJN2FpHNI-iskvcoS76SYYT_B8DP3P9YHlruVrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322327781</pqid></control><display><type>article</type><title>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</title><source>Springer Nature - Complete Springer Journals</source><creator>Naik, Sneha N. ; Walley, Stephen M.</creator><creatorcontrib>Naik, Sneha N. ; Walley, Stephen M.</creatorcontrib><description>We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-04160-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Crystallography and Scattering Methods ; Grain boundaries ; Grain boundary sliding ; Grain growth ; Grain size ; Hardness ; Materials Science ; Mechanical properties ; Nanocrystals ; Polymer Sciences ; Review ; Solid Mechanics</subject><ispartof>Journal of materials science, 2020-03, Vol.55 (7), p.2661-2681</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</citedby><cites>FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</cites><orcidid>0000-0002-5399-6185 ; 0000-0002-9949-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-04160-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-04160-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Naik, Sneha N.</creatorcontrib><creatorcontrib>Walley, Stephen M.</creatorcontrib><title>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Crystallography and Scattering Methods</subject><subject>Grain boundaries</subject><subject>Grain boundary sliding</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Polymer Sciences</subject><subject>Review</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctKAzEUhoMoWC8v4GrAlYvRk6SZpMtSvIGgaN0aYuakHWkzNUmt7nwH39AnMTqC6EISOCH5vpwDPyF7FA4pgDyKFJTgJdBBCX1aQblaIz0qJC_7Cvg66QEwVrJ-RTfJVowPACAkoz1yN55icWZms_fXtytMdloYXxeNf8IQ_zwEnJnUtD5-ISl7UxNqjzEWrSu88a0NLzFlpfFYzDGf4g7ZcLng7nfdJrcnx-PRWXlxeXo-Gl6UVgBLpZLG0spwI-6l5CAcU8hsJTl3_QG4GmvDK8ucEhVYwVRd1VyYAVJBBa8549tkv_t3EdrHJcakH9pl8LmlZpzlLaWimTrsqImZoW68a1MwNq8a541tPbom3w8rkAqU4ioLB7-EzCR8ThOzjFGf31z_ZlnH2tDGGNDpRWjmJrxoCvozJN2FpHNI-iskvcoS76SYYT_B8DP3P9YHlruVrg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Naik, Sneha N.</creator><creator>Walley, Stephen M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5399-6185</orcidid><orcidid>https://orcid.org/0000-0002-9949-0024</orcidid></search><sort><creationdate>20200301</creationdate><title>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</title><author>Naik, Sneha N. ; Walley, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Crystallography and Scattering Methods</topic><topic>Grain boundaries</topic><topic>Grain boundary sliding</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Polymer Sciences</topic><topic>Review</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Sneha N.</creatorcontrib><creatorcontrib>Walley, Stephen M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Sneha N.</au><au>Walley, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>2661</spage><epage>2681</epage><pages>2661-2681</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-04160-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5399-6185</orcidid><orcidid>https://orcid.org/0000-0002-9949-0024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-03, Vol.55 (7), p.2661-2681
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2322327781
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Comparative analysis
Crystallography and Scattering Methods
Grain boundaries
Grain boundary sliding
Grain growth
Grain size
Hardness
Materials Science
Mechanical properties
Nanocrystals
Polymer Sciences
Review
Solid Mechanics
title The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hall%E2%80%93Petch%20and%20inverse%20Hall%E2%80%93Petch%20relations%20and%20the%20hardness%20of%20nanocrystalline%20metals&rft.jtitle=Journal%20of%20materials%20science&rft.au=Naik,%20Sneha%20N.&rft.date=2020-03-01&rft.volume=55&rft.issue=7&rft.spage=2661&rft.epage=2681&rft.pages=2661-2681&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-04160-w&rft_dat=%3Cgale_proqu%3EA607808838%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322327781&rft_id=info:pmid/&rft_galeid=A607808838&rfr_iscdi=true