The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals
We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-03, Vol.55 (7), p.2661-2681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2681 |
---|---|
container_issue | 7 |
container_start_page | 2661 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Naik, Sneha N. Walley, Stephen M. |
description | We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials. |
doi_str_mv | 10.1007/s10853-019-04160-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2322327781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607808838</galeid><sourcerecordid>A607808838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWC8v4GrAlYvRk6SZpMtSvIGgaN0aYuakHWkzNUmt7nwH39AnMTqC6EISOCH5vpwDPyF7FA4pgDyKFJTgJdBBCX1aQblaIz0qJC_7Cvg66QEwVrJ-RTfJVowPACAkoz1yN55icWZms_fXtytMdloYXxeNf8IQ_zwEnJnUtD5-ISl7UxNqjzEWrSu88a0NLzFlpfFYzDGf4g7ZcLng7nfdJrcnx-PRWXlxeXo-Gl6UVgBLpZLG0spwI-6l5CAcU8hsJTl3_QG4GmvDK8ucEhVYwVRd1VyYAVJBBa8549tkv_t3EdrHJcakH9pl8LmlZpzlLaWimTrsqImZoW68a1MwNq8a541tPbom3w8rkAqU4ioLB7-EzCR8ThOzjFGf31z_ZlnH2tDGGNDpRWjmJrxoCvozJN2FpHNI-iskvcoS76SYYT_B8DP3P9YHlruVrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322327781</pqid></control><display><type>article</type><title>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</title><source>Springer Nature - Complete Springer Journals</source><creator>Naik, Sneha N. ; Walley, Stephen M.</creator><creatorcontrib>Naik, Sneha N. ; Walley, Stephen M.</creatorcontrib><description>We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-04160-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Crystallography and Scattering Methods ; Grain boundaries ; Grain boundary sliding ; Grain growth ; Grain size ; Hardness ; Materials Science ; Mechanical properties ; Nanocrystals ; Polymer Sciences ; Review ; Solid Mechanics</subject><ispartof>Journal of materials science, 2020-03, Vol.55 (7), p.2661-2681</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</citedby><cites>FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</cites><orcidid>0000-0002-5399-6185 ; 0000-0002-9949-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-04160-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-04160-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Naik, Sneha N.</creatorcontrib><creatorcontrib>Walley, Stephen M.</creatorcontrib><title>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Crystallography and Scattering Methods</subject><subject>Grain boundaries</subject><subject>Grain boundary sliding</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Polymer Sciences</subject><subject>Review</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctKAzEUhoMoWC8v4GrAlYvRk6SZpMtSvIGgaN0aYuakHWkzNUmt7nwH39AnMTqC6EISOCH5vpwDPyF7FA4pgDyKFJTgJdBBCX1aQblaIz0qJC_7Cvg66QEwVrJ-RTfJVowPACAkoz1yN55icWZms_fXtytMdloYXxeNf8IQ_zwEnJnUtD5-ISl7UxNqjzEWrSu88a0NLzFlpfFYzDGf4g7ZcLng7nfdJrcnx-PRWXlxeXo-Gl6UVgBLpZLG0spwI-6l5CAcU8hsJTl3_QG4GmvDK8ucEhVYwVRd1VyYAVJBBa8549tkv_t3EdrHJcakH9pl8LmlZpzlLaWimTrsqImZoW68a1MwNq8a541tPbom3w8rkAqU4ioLB7-EzCR8ThOzjFGf31z_ZlnH2tDGGNDpRWjmJrxoCvozJN2FpHNI-iskvcoS76SYYT_B8DP3P9YHlruVrg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Naik, Sneha N.</creator><creator>Walley, Stephen M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5399-6185</orcidid><orcidid>https://orcid.org/0000-0002-9949-0024</orcidid></search><sort><creationdate>20200301</creationdate><title>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</title><author>Naik, Sneha N. ; Walley, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-87ac16a3a5b77305f28e2c6733f490fdeda36c2f8560c528d6d35a9e15153d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Crystallography and Scattering Methods</topic><topic>Grain boundaries</topic><topic>Grain boundary sliding</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Polymer Sciences</topic><topic>Review</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Sneha N.</creatorcontrib><creatorcontrib>Walley, Stephen M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Sneha N.</au><au>Walley, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>7</issue><spage>2661</spage><epage>2681</epage><pages>2661-2681</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>We review some of the factors that influence the hardness of polycrystalline materials with grain sizes less than 1 µm. The fundamental physical mechanisms that govern the hardness of nanocrystalline materials are discussed. The recently proposed dislocation curvature model for grain size-dependent strengthening and the 60-year-old Hall–Petch relationship are compared. For grains less than 30 nm in size, there is evidence for a transition from dislocation-based plasticity to grain boundary sliding, rotation, or diffusion as the main mechanism responsible for hardness. The evidence surrounding the inverse Hall–Petch phenomenon is found to be inconclusive due to processing artefacts, grain growth effects, and errors associated with the conversion of hardness to yield strength in nanocrystalline materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-04160-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5399-6185</orcidid><orcidid>https://orcid.org/0000-0002-9949-0024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-03, Vol.55 (7), p.2661-2681 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2322327781 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Comparative analysis Crystallography and Scattering Methods Grain boundaries Grain boundary sliding Grain growth Grain size Hardness Materials Science Mechanical properties Nanocrystals Polymer Sciences Review Solid Mechanics |
title | The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hall%E2%80%93Petch%20and%20inverse%20Hall%E2%80%93Petch%20relations%20and%20the%20hardness%20of%20nanocrystalline%20metals&rft.jtitle=Journal%20of%20materials%20science&rft.au=Naik,%20Sneha%20N.&rft.date=2020-03-01&rft.volume=55&rft.issue=7&rft.spage=2661&rft.epage=2681&rft.pages=2661-2681&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-04160-w&rft_dat=%3Cgale_proqu%3EA607808838%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322327781&rft_id=info:pmid/&rft_galeid=A607808838&rfr_iscdi=true |