Unconstrained ear detection using ensemble‐based convolutional neural network model
Summary This paper presents a technique for ear detection from 2D profile face images that is capable of significantly reducing the false positives. In an ear biometrics system, recognition performance highly depends on the performance of the ear detection module. The trade‐off between the complexit...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2020-01, Vol.32 (1), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 32 |
creator | Ganapathi, Iyyakutti Iyappan Prakash, Surya Dave, Ishan R. Bakshi, Sambit |
description | Summary
This paper presents a technique for ear detection from 2D profile face images that is capable of significantly reducing the false positives. In an ear biometrics system, recognition performance highly depends on the performance of the ear detection module. The trade‐off between the complexity and the false positive detection is one of the essential component, where the complexity of a system increases proportionally to achieve a zero false positive rate detection. In literature, available ear detection techniques based on handcrafted features face challenges with low‐quality acquired images affected by illumination, occlusion, and pose variations. We propose an ear detection technique using ensemble of convolutional neural network (CNN). The first part of the technique trains three models of CNN on a given dataset, whereas in later part, weighted average of the outputs of trained models is utilized to detect the ear regions. The used ensemble models show better performance as compared to the case when each individual model is used standalone. The proposed technique is being evaluated on two databases, viz, IIT Indore‐Collection A (IIT‐Col A) database and annotated web ear (AWE) database. Experimental results of ear detection demonstrate the superior performance of the proposed technique over other state‐of‐the‐art techniques in handling illumination, occlusion, and pose variations. |
doi_str_mv | 10.1002/cpe.5197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322197681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322197681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-de65207e6906b2846f190679ba3067cc24bf311183f3b3fd608f13261960907b3</originalsourceid><addsrcrecordid>eNp10M9KAzEQBvAgCtYq-AgLXrxszSRtdvcopf6Bgh7sOSTZiWzdJjXZtfTmI_iMPolpK948fXP4zTB8hFwCHQGl7MascTSBqjgiA5hwllPBx8d_MxOn5CzGJaUAlMOALBbOeBe7oBqHdYYqZDV2aLrGu6yPjXvN0EVc6Ra_P7-0igmlhQ_f9jui2sxhH_bRbXx4y1a-xvacnFjVRrz4zSFZ3M1epg_5_On-cXo7zw2reJHXKCaMFigqKjQrx8JCmopKK57CGDbWlgNAyS3X3NaClhY4E1AJWtFC8yG5OtxdB__eY-zk0vchfRUl44ylGkQJSV0flAk-xoBWrkOzUmErgcpdaTKVJnelJZof6KZpcfuvk9Pn2d7_AH8TbgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322197681</pqid></control><display><type>article</type><title>Unconstrained ear detection using ensemble‐based convolutional neural network model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ganapathi, Iyyakutti Iyappan ; Prakash, Surya ; Dave, Ishan R. ; Bakshi, Sambit</creator><creatorcontrib>Ganapathi, Iyyakutti Iyappan ; Prakash, Surya ; Dave, Ishan R. ; Bakshi, Sambit</creatorcontrib><description>Summary
This paper presents a technique for ear detection from 2D profile face images that is capable of significantly reducing the false positives. In an ear biometrics system, recognition performance highly depends on the performance of the ear detection module. The trade‐off between the complexity and the false positive detection is one of the essential component, where the complexity of a system increases proportionally to achieve a zero false positive rate detection. In literature, available ear detection techniques based on handcrafted features face challenges with low‐quality acquired images affected by illumination, occlusion, and pose variations. We propose an ear detection technique using ensemble of convolutional neural network (CNN). The first part of the technique trains three models of CNN on a given dataset, whereas in later part, weighted average of the outputs of trained models is utilized to detect the ear regions. The used ensemble models show better performance as compared to the case when each individual model is used standalone. The proposed technique is being evaluated on two databases, viz, IIT Indore‐Collection A (IIT‐Col A) database and annotated web ear (AWE) database. Experimental results of ear detection demonstrate the superior performance of the proposed technique over other state‐of‐the‐art techniques in handling illumination, occlusion, and pose variations.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5197</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Biometric recognition systems ; Biometrics ; Complexity ; deep learning ; Ear ; ear detection ; ensemble model ; Face recognition ; Illumination ; Image acquisition ; Image detection ; Image quality ; Neural networks ; Occlusion ; Two dimensional models ; unconstrained environment</subject><ispartof>Concurrency and computation, 2020-01, Vol.32 (1), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-de65207e6906b2846f190679ba3067cc24bf311183f3b3fd608f13261960907b3</citedby><cites>FETCH-LOGICAL-c2937-de65207e6906b2846f190679ba3067cc24bf311183f3b3fd608f13261960907b3</cites><orcidid>0000-0001-9869-5493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5197$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5197$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Ganapathi, Iyyakutti Iyappan</creatorcontrib><creatorcontrib>Prakash, Surya</creatorcontrib><creatorcontrib>Dave, Ishan R.</creatorcontrib><creatorcontrib>Bakshi, Sambit</creatorcontrib><title>Unconstrained ear detection using ensemble‐based convolutional neural network model</title><title>Concurrency and computation</title><description>Summary
This paper presents a technique for ear detection from 2D profile face images that is capable of significantly reducing the false positives. In an ear biometrics system, recognition performance highly depends on the performance of the ear detection module. The trade‐off between the complexity and the false positive detection is one of the essential component, where the complexity of a system increases proportionally to achieve a zero false positive rate detection. In literature, available ear detection techniques based on handcrafted features face challenges with low‐quality acquired images affected by illumination, occlusion, and pose variations. We propose an ear detection technique using ensemble of convolutional neural network (CNN). The first part of the technique trains three models of CNN on a given dataset, whereas in later part, weighted average of the outputs of trained models is utilized to detect the ear regions. The used ensemble models show better performance as compared to the case when each individual model is used standalone. The proposed technique is being evaluated on two databases, viz, IIT Indore‐Collection A (IIT‐Col A) database and annotated web ear (AWE) database. Experimental results of ear detection demonstrate the superior performance of the proposed technique over other state‐of‐the‐art techniques in handling illumination, occlusion, and pose variations.</description><subject>Artificial neural networks</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Complexity</subject><subject>deep learning</subject><subject>Ear</subject><subject>ear detection</subject><subject>ensemble model</subject><subject>Face recognition</subject><subject>Illumination</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>Image quality</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Two dimensional models</subject><subject>unconstrained environment</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M9KAzEQBvAgCtYq-AgLXrxszSRtdvcopf6Bgh7sOSTZiWzdJjXZtfTmI_iMPolpK948fXP4zTB8hFwCHQGl7MascTSBqjgiA5hwllPBx8d_MxOn5CzGJaUAlMOALBbOeBe7oBqHdYYqZDV2aLrGu6yPjXvN0EVc6Ra_P7-0igmlhQ_f9jui2sxhH_bRbXx4y1a-xvacnFjVRrz4zSFZ3M1epg_5_On-cXo7zw2reJHXKCaMFigqKjQrx8JCmopKK57CGDbWlgNAyS3X3NaClhY4E1AJWtFC8yG5OtxdB__eY-zk0vchfRUl44ylGkQJSV0flAk-xoBWrkOzUmErgcpdaTKVJnelJZof6KZpcfuvk9Pn2d7_AH8TbgA</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Ganapathi, Iyyakutti Iyappan</creator><creator>Prakash, Surya</creator><creator>Dave, Ishan R.</creator><creator>Bakshi, Sambit</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9869-5493</orcidid></search><sort><creationdate>20200110</creationdate><title>Unconstrained ear detection using ensemble‐based convolutional neural network model</title><author>Ganapathi, Iyyakutti Iyappan ; Prakash, Surya ; Dave, Ishan R. ; Bakshi, Sambit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-de65207e6906b2846f190679ba3067cc24bf311183f3b3fd608f13261960907b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Complexity</topic><topic>deep learning</topic><topic>Ear</topic><topic>ear detection</topic><topic>ensemble model</topic><topic>Face recognition</topic><topic>Illumination</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>Image quality</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Two dimensional models</topic><topic>unconstrained environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganapathi, Iyyakutti Iyappan</creatorcontrib><creatorcontrib>Prakash, Surya</creatorcontrib><creatorcontrib>Dave, Ishan R.</creatorcontrib><creatorcontrib>Bakshi, Sambit</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganapathi, Iyyakutti Iyappan</au><au>Prakash, Surya</au><au>Dave, Ishan R.</au><au>Bakshi, Sambit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconstrained ear detection using ensemble‐based convolutional neural network model</atitle><jtitle>Concurrency and computation</jtitle><date>2020-01-10</date><risdate>2020</risdate><volume>32</volume><issue>1</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
This paper presents a technique for ear detection from 2D profile face images that is capable of significantly reducing the false positives. In an ear biometrics system, recognition performance highly depends on the performance of the ear detection module. The trade‐off between the complexity and the false positive detection is one of the essential component, where the complexity of a system increases proportionally to achieve a zero false positive rate detection. In literature, available ear detection techniques based on handcrafted features face challenges with low‐quality acquired images affected by illumination, occlusion, and pose variations. We propose an ear detection technique using ensemble of convolutional neural network (CNN). The first part of the technique trains three models of CNN on a given dataset, whereas in later part, weighted average of the outputs of trained models is utilized to detect the ear regions. The used ensemble models show better performance as compared to the case when each individual model is used standalone. The proposed technique is being evaluated on two databases, viz, IIT Indore‐Collection A (IIT‐Col A) database and annotated web ear (AWE) database. Experimental results of ear detection demonstrate the superior performance of the proposed technique over other state‐of‐the‐art techniques in handling illumination, occlusion, and pose variations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5197</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9869-5493</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2020-01, Vol.32 (1), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2322197681 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Artificial neural networks Biometric recognition systems Biometrics Complexity deep learning Ear ear detection ensemble model Face recognition Illumination Image acquisition Image detection Image quality Neural networks Occlusion Two dimensional models unconstrained environment |
title | Unconstrained ear detection using ensemble‐based convolutional neural network model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconstrained%20ear%20detection%20using%20ensemble%E2%80%90based%20convolutional%20neural%20network%20model&rft.jtitle=Concurrency%20and%20computation&rft.au=Ganapathi,%20Iyyakutti%20Iyappan&rft.date=2020-01-10&rft.volume=32&rft.issue=1&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5197&rft_dat=%3Cproquest_cross%3E2322197681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322197681&rft_id=info:pmid/&rfr_iscdi=true |